日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
4.解方程組:$\left\{\begin{array}{l}{x}^{2}-3xy+2{y}^{2}=0\\{x}^{2}+{y}^{2}=1\end{array}\right.$.

分析 根據因式分解,可用Y表示x,根據代入消元法,可得方程組的解.

解答 解:$\left\{\begin{array}{l}{{x}^{2}-3xy+2{y}^{2}=0①}\\{{x}^{2}+{y}^{2}=1②}\end{array}\right.$,
由①得(x-y)(x-2y)=0.
于是,得
x-y=0或x-2y=0,
x=y③或x=2y④.
將③代入②得2x2=1,解得x=±$\frac{\sqrt{2}}{2}$,y=$±\frac{\sqrt{2}}{2}$,
方程組的解為$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}}\\{y=\frac{\sqrt{2}}{2}}\end{array}\right.$,$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{2}}\\{y=-\frac{\sqrt{2}}{2}}\end{array}\right.$;
將④代入②得5y2=1,解得y=$±\frac{\sqrt{5}}{5}$,x=±$\frac{2\sqrt{5}}{5}$,
方程組的解為$\left\{\begin{array}{l}{x=\frac{2\sqrt{5}}{5}}\\{y=\frac{\sqrt{5}}{5}}\end{array}\right.$,$\left\{\begin{array}{l}{x=-\frac{2\sqrt{5}}{5}}\\{y=-\frac{\sqrt{5}}{5}}\end{array}\right.$.
綜上所述:原方程組的解為$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}}\\{y=\frac{\sqrt{2}}{2}}\end{array}\right.$,$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{2}}\\{y=-\frac{\sqrt{2}}{2}}\end{array}\right.$$\left\{\begin{array}{l}{x=\frac{2\sqrt{5}}{5}}\\{y=\frac{\sqrt{5}}{5}}\end{array}\right.$,$\left\{\begin{array}{l}{x=-\frac{2\sqrt{5}}{5}}\\{y=-\frac{\sqrt{5}}{5}}\end{array}\right.$.

點評 本題考查了解方程組,利用因式分解得出x=y或x=2y是解題關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:填空題

14.如圖,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC的中線,AE是∠BAD的角平分線,DF∥AB交AE的延長線于點F,則DF的長為5.5.

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

15.如圖所示,圖中共有線段多少條(  )
A.12B.10C.8D.6

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

12.如圖,等邊△ABC的邊長為2,小亮建立了如圖所示的坐標系,此時頂點A的坐標為(-1,$\sqrt{3}$).

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

19.如圖,平行于x軸的直線l與y軸、直線y=3x、直線y=x分別交于點A、B、C.則下列結論正確的個數有(  )
①∠AOB+∠BOC=45°;②BC=2AB;③OB2=10AB2;④OC2=$\frac{8}{5}$OB2
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

9.多項式8x2+mxy-5y2+xy-8中不含xy項,則m的值為-1.

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

16.如圖,在⊙O中∠BOC=80°,則∠BAC等于(  )
A.80°B.50°C.40°D.25°

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

13.若∠α=32°16′27″,那么它的余角的度數為57°43'33″.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

14.(1)問題發現與探究:
如圖1,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點A、D、E在同一直線上,CM⊥AE于點M,連接BE,則:
①線段AE、BD之間的大小關系是AE=BD,∠ADB=90°,并說明理由.
②求證:AD=2CM+BD.
(2)問題拓展與應用:
如圖2、圖3,等腰Rt△ABC中,∠ACB=90°,過點A作直線,在直線上取點D,∠ADC=45°,連結BD,BD=1,AC=$\sqrt{2}$,則點C到直線的距離是$\frac{\sqrt{3}-1}{2}$或$\frac{\sqrt{3}+1}{2}$,寫出計算過程.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久va | 新超碰在线 | 网站av | 成人欧美一区二区 | 欧美精品一区在线发布 | 欧美一区| 国产欧美精品区一区二区三区 | 久久99精品久久久久久秒播放器 | www欧美 | 欧美成人h版在线观看 | 色欧美视频 | 欧美亚洲国产一区二区三区 | 成人精品在线视频 | a级毛片久久 | 99精品欧美一区二区三区综合在线 | 国产午夜小视频 | 日韩欧美一区二区三区免费观看 | 91porn在线 | 一级片视频免费 | 成人一区二区三区在线 | 日本亚洲精品一区二区三区 | 欧美自拍视频 | 久久国产精彩视频 | 三级毛片久久 | 国产精品嫩草55av | 欧美日韩爱爱 | 激情.com| 成人免费福利视频 | 国产精品久久久久久一级毛片 | 成人免费一区二区三区视频网站 | 日本久久网 | 国产精品久久久久久久久久久久久久 | 亚洲一二视频 | 精品一区二区三区免费 | 超碰人人99 | 国产区在线 | 亚洲国产精品久久久久久 | 午夜精品久久久久久久久 | 久久久久久久久久久久久久久久久久久 | 精品国产91久久久久久久 | xvideos视频 |