如圖,拋物線與
軸交于A、B兩點(點A在點B左側(cè)),與y軸交
于點C,且當(dāng)=0和
=4時,y的值相等。直線y=4x-16與這條拋物線相交于兩點,其中一點的橫坐標(biāo)是3,另一點是這條拋物線的頂點M。
(1)求這條拋物線的解析式;
(2)P為線段OM上一點,過點P作PQ⊥軸于點Q。若點P在線段OM上運動(點P不與點O重合,但可以與點M重合),設(shè)OQ的長為t,四邊形PQCO的面積為S,求S與t之間的函數(shù)關(guān)系式及自變量t的取值范圍;
(3)隨著點P的運動,四邊形PQCO的面積S有最大值嗎?如果S有最大值,請求出S的最大值并指出點Q的具體位置和四邊形PQCO的特殊形狀;如果S沒有最大值,請簡要說明理由;
(4)隨著點P的運動,是否存在t的某個值,能滿足PO=OC?如果存在,請求出t的值。
解:(1)∵當(dāng)和
時,
的值相等,∴
,
∴,∴
將代入
,得
,
將代入
,得
∴設(shè)拋物線的解析式為
將點代入,得
,解得
.
∴拋物線,即
(2)設(shè)直線OM的解析式為,將點M
代入,得
,
∴
則點P,
,而
,
.
=
的取值范圍為:
<
≤
(3)隨著點的運動,四邊形
的面積
有最大值.
從圖像可看出,隨著點由
→
運動,
的面積與
的面積在不斷增大,即
不斷變大,當(dāng)然點
運動到點
時,
最值
此時時,點
在線段
的中點上
因而.
當(dāng)時,
,
∥
,∴四邊形
是平行四邊形.
(4)隨著點的運動,存在
,能滿足
設(shè)點,
,
. 由勾股定理,得
.
∵,∴
,
<
,
(不合題意)
∴當(dāng)時,
科目:初中數(shù)學(xué) 來源: 題型:
如圖,拋物線與軸交于
(
,0)、
(
,0)兩點,且
,與
軸交于點
,其中
是方程
的兩個根。(14分)
(1)求拋物線的解析式;
(2)點
是線段
上的一個動點,過點
作
∥
,交
于點
,連接
,當(dāng)
的面積最大時,求點
的坐標(biāo);
(3)點在(1)中拋物線上,
點為拋物線上一動點,在
軸上是
否存在點,使以
為頂
點的四邊形是平行四邊形,如果存在,
求出所有滿足條件的點的坐標(biāo),
若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,拋物線與
軸交于
兩點,與
軸相交于點
.連結(jié)AC、BC,B、C兩點的坐標(biāo)分別為B(1,0)、
,且當(dāng)x=-10和x=8時函數(shù)的值
相等.
1.求a、b、c的值;
2.若點同時從
點出發(fā),均以每秒1個單位長度的速度分別沿
邊運動,其中一個點到達終點時,另一點也隨之停止運動.連結(jié)
,將
沿
翻折,當(dāng)運動時間為幾秒時,
點恰好落在
邊上的
處?并求點
的坐標(biāo)及四邊形
的面積;
3.上下平移該拋物線得到新的拋物線,設(shè)新拋物線的頂點為D,對稱軸與x軸的交點為E,若△ODE與△OBC相似,求新拋物線的解析式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,拋物線與
軸交于A、B兩點,與
軸交于C點,四邊形OBHC為矩形,CH的延長
線交拋物線于點D(5,2),連結(jié)BC、AD.
(1)求C點的坐標(biāo)及拋物線的解析式;
(2)將△BCH繞點B按順時針旋轉(zhuǎn)90º后再沿軸對折得到△BEF(點C與點E對應(yīng)),判斷點E是否落在拋物線上,并說明理由;
(3)設(shè)過點E的直線交AB邊于點P,交CD邊于點Q. 問是否存在點P,使直線PQ分梯形ABCD的面積為1∶3兩部分?若存在,求出P點坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆四川省鹽邊縣紅格中學(xué)九年級下學(xué)期摸底考試數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖,拋物線與
軸交于
兩點,與
軸交于
點.
(1)請求出拋物線頂點的坐標(biāo)(用含
的代數(shù)式表示),
兩點的坐標(biāo);
(2)經(jīng)探究可知,與
的面積比不變,試求出這個比值;
(3)是否存在使為直角三角形的拋物線?若存在,請求出;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆仙師中學(xué)九年級第一次月考試考試數(shù)學(xué)卷 題型:選擇題
如圖,拋物線與軸交于
(
,0)、
(
,0)兩點,且
,與
軸交于點
,其中
是方程
的兩個根。(14分)
(1)求拋物線的解析式;
(2)點
是線段
上的一個動點,過點
作
∥
,交
于點
,連接
,當(dāng)
的面積最大時,求點
的坐標(biāo);
(3)點在(1)中拋物線上,
點為拋物線上一動點,在
軸上是
否存在點,使以
為頂
點的四邊形是平行四邊形,如果存在,
求出所有滿足條件的點的坐標(biāo),
若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com