【題目】甲、乙兩地高速鐵路建設成功,一列動車從甲地開往乙地,一列普通列車從乙地開往甲地,兩車均勻速行駛并同時出發,設普通列車行駛的時間為x(小時),兩車之間的距離為y(千米),圖中的折線表示y與x之間的函數關系,下列說法:
①甲、乙兩地相距1800千米;
②點B的實際意義是兩車出發后4小時相遇;
③m=6,n=900;
④動車的速度是450千米/小時.
其中不正確的是( 。
A.①B.②C.③D.④
科目:初中數學 來源: 題型:
【題目】某企業承接了27000件產品的生產任務,計劃安排甲、乙兩個車間的共50名工人,合作生產20天完成.已知甲、乙兩個車間利用現有設備,工人的工作效率為:甲車間每人每天生產25件,乙車間每人每天生產30件.
(1)求甲、乙兩個車間各有多少名工人參與生產?
(2)為了提前完成生產任務,該企業設計了兩種方案:
方案一 甲車間租用先進生產設備,工人的工作效率可提高20%,乙車間維持不變.
方案二 乙車間再臨時招聘若干名工人(工作效率與原工人相同),甲車間維持不變.
設計的這兩種方案,企業完成生產任務的時間相同.
①求乙車間需臨時招聘的工人數;
②若甲車間租用設備的租金每天900元,租用期間另需一次性支付運輸等費用1500元;乙車間需支付臨時招聘的工人每人每天200元.問:從新增加的費用考慮,應選擇哪種方案能更節省開支?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xoy中,直線(k為常數)與拋物線
交于A,B兩點,且A點在
軸右側,P點的坐標為(0,4)連接PA,PB.(1)△PAB的面積的最小值為____;(2)當
時,
=_______
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】遵義市各校都在深入開展勞動教育,某校為了解七年級學生一學期參加課外勞動時間(單位:h)的情況,從該校七年級隨機抽查了部分學生進行問卷調查,并將調查結果繪制成如下不完整的頻數分布表和頻數分布直方圖.
課外勞動時間頻數分布表
勞動時間分組 | 頻數 | 頻率 |
0≤t<20 | 2 | 0.1 |
20≤t<40 | 4 | m |
40≤t<60 | 6 | 0.3 |
60≤t<80 | a | 0.25 |
80≤t<100 | 3 | 0.15 |
解答下列問題:
(1)頻數分布表中a= ,m= ;將頻數分布直方圖補充完整;
(2)若七年級共有學生400人,試估計該校七年級學生一學期課外勞動時間不少于60h的人數;
(3)已知課外勞動時間在60h≤t<80h的男生人數為2人,其余為女生,現從該組中任選2人代表學校參加“全市中學生勞動體驗”演講比賽,請用樹狀圖或列表法求所選學生為1男1女的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】設函數y1=,y2=﹣
(k>0).
(1)當2≤x≤3時,函數y1的最大值是a,函數y2的最小值是a﹣4,求a和k的值.
(2)設m≠0,且m≠﹣1,當x=m時,y1=p;當x=m+1時,y1=q.圓圓說:“p一定大于q”.你認為圓圓的說法正確嗎?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,∠ABD=60°,點E從點A出發,以每秒2個單位長度的速度沿邊AB運動,到點B停止運動.過點E作EF∥BD交AD于點F,將△AEF繞點E順時針旋轉得到△GEH,且點G落在線段EF上,設點E的運動時間為t(秒)(0<t<3).
(1)若t=1,求△GEH的面積;
(2)若點G在∠ABD的平分線上,求BE的長;
(3)設△GEH與△ABD重疊部分的面積為T,用含t的式子表示T,并直接寫出當0<t<3時T的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC為⊙O的內接三角形,AB為⊙O的直徑,將△ABC沿直線AB折疊得到△ABD,交⊙O于點D.連接CD交AB于點E,延長BD和CA相交于點P,過點A作AG∥CD交BP于點G.
(1)求證:直線GA是⊙O的切線;
(2)求證:AC2=GDBD;
(3)若tan∠AGB=,PG=6,求cos∠P的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E是邊BC上任意一點(點E不與點B、C重合),連結DE,點C關于DE的對稱點為C1,連結AC1并延長交DE的延長線于點M,F是AC1的中點,連結DF.
(猜想)如圖①,∠FDM的大小為 度.
(探究)如圖②,過點A作AM1∥DF交MD的延長線于點M1,連結BM.求證:△ABM≌△ADM1.
(拓展)如圖③,連結AC,若正方形ABCD的邊長為2,則△ACC1面積的最大值為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com