日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知直線y=-x+by軸相交于點B(0,3),與x軸交于點A,將△AOB沿y軸折疊,使點A落在x軸上的點C.

(1)求點C的坐標;

(2)設點P為線段CA上的一個動點,點P與點A、C不重合.聯結PB.以點P為端點作射線PMAB于點M,使∠BPM=∠BAC.

①求證:△PBC∽△MPA.

②是否存在點P,使△PBM為直角三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

【答案】(1)C(-4,0);(2)①證明見解析,②存在.使△PBM為直角三角形的點P有兩個P1(-,0),P2(0,0).

【解析】

(1)根據B點坐標求得直線解析式,再求得A點坐標,然后根據AC關于y軸對稱,據此即可確定C的坐標;
(2)①根據點C與點A關于y軸對稱,即可得到BC=BA,則∠BCP=∠MAP,再根據三角形的外角的性質即可證得∠PMA=∠BPC,從而證得兩個三角形相似;
首先求得B的坐標,當∠PBM=90°時,則有△BPO∽△ABO,根據相似三角形的對應邊的比相等,即可求得PO的長,求得P的坐標;
∠PMB=90°時,則∠PMA═90°時,BP⊥AC,則此時點P與點O重合.則P的坐標可以求得.

(1)解:直線y=-x+by軸相交于點B(0,3),

∴b=3,

直線的解析式為y=-x+3,

y=0,得到x=4,

∴A(4,0),

C與點A關于y軸對稱,

∴C(-4,0);

(2)①證明:∵∠BPM=∠BAC,且∠PMA=∠BPM+∠PBM,∠BPC=∠BAC+∠PBM,

∴∠PMA=∠BPC,

C與點A關于y軸對稱,且∠BPM=∠BAC,

∴∠BCP=∠MAP,

∴△PBC∽△MPA;

解:存在.

由題意:A(4,0),B(0,3),C(-4,0)

∠PBM=90°時,則有△BPO∽△ABO,

=,即=

∴PO=,即:P1(-,0).

∠PMB=90°時,則∠PMA═90°,

∴∠PAM+∠MPA=90°,

∵∠BPM=∠BAC,

∴∠BPM+∠APM=90°,

∴BP⊥AC.

過點B只有一條直線與AC垂直,

此時點P與點O重合,即:符合條件的點P2的坐標為:P2(0,0).

使△PBM為直角三角形的點P有兩個P1(-,0),P2(0,0).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+ca≠0)的圖象經過M10)和N30)兩點,且與y軸交于D03),直線l是拋物線的對稱軸.

1)求該拋物線的解析式.

2)若過點A﹣10)的直線AB與拋物線的對稱軸和x軸圍成的三角形面積為6,求此直線的解析式.

3)點P在拋物線的對稱軸上,⊙P與直線ABx軸都相切,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)如圖①②,銳角的正弦值和余弦值都隨著銳角的變化而變化.試探索隨著銳角度數的增大,它的正弦值和余弦值變化的規律.

(2)根據你探索到的規律,試比較18°,34°,50°,62°,88°這些銳角的正弦值的大小和余弦值的大小.

(3)比較大小(在橫線上填寫“<”“>”或“=”):

若α=45°,則sin α    cos α;

若α<45°,則sin α    cos α;

若α>45°,則sin α    cos α.

(4)利用互為余角的兩個角的正弦和余弦的關系,試比較下列正弦值和余弦值的大小:sin 10°,cos 30°,sin 50°,cos 70°.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知正方形ABCD中,BE平分∠DBC且交CD邊于點E,將△BCE繞點C順時針旋轉到△DCF的位置,并延長BE交DF于點G.

(1)求證:△BDG∽△DEG;

(2)若EGBG=4,求BE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點Py軸的正半軸上,⊙Px軸于BC兩點,以AC為直角邊作等腰RtACDBD分別交y軸和⊙PEF兩點,連接ACFC

(1)求證:∠ACF=ADB

(2)若點ABD的距離為mBF+CF=n,求線段CD的長;

(3)當⊙P的大小發生變化而其他條件不變時,的值是否發生變化?若不發生變化,請求出其值;若發生變化,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,某攔水大壩的橫斷面為梯形ABCDAEDF為梯形的高,其中迎水坡AB的坡角α=45°,坡長AB=米,背水坡CD的坡度i=1:iDFFC的比值),則背水坡CD的坡長為______米.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ADABC的邊BC上的高,再添加下列條件中的某一個就能推出ABC是等腰三角形.BD=CD;②∠BAD=∠CAD;③AB+BDAC+CD AB-BD=AC-CD;⑤∠BAD=∠ACD.可以添加的條件序號正確答案是( )

A.①②B.①②③C.①②③④D.①②③④⑤.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,中,AB=AC,DE分別在邊ABAC上,且滿足AD=AE.下列結論中:①;②AO平分∠BAC;③OB=OC;④AOBC;⑤若,則;其中正確的有( )

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知直線1經過點A0,﹣1)與點P23).

1)求直線1的表達式;

2)若在y軸上有一點B,使△APB的面積為5,求點B的坐標.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品一区二区三区在线播放 | 亚洲欧美在线观看 | 日韩欧美在线免费观看 | 日韩在线视频精品 | 国产精品久久久久久久久久99 | 国产成人精品久久二区二区91 | 在线观看中文字幕 | 精品在线一区二区三区 | 亚洲国产成人av好男人在线观看 | 在线草| 国产精品久久久久久亚洲毛片 | 高清xxxx| 性色av网 | 亚洲成人在线观看视频 | 日韩免费在线播放 | 久久精品无码一区二区日韩av | 午夜国产一级 | 黄色影视免费观看 | 日本视频在线观看 | 国产精品久久7777 | 日本高清久久 | 成人黄色在线 | 精品美女在线 | 九九热精品免费视频 | 国产综合精品 | 在线观看日韩 | 国产片三级91 | 国产精品成人在线 | 精品一二三区在线观看 | 久久男人天堂 | 国产一区二区精品在线观看 | 国产探花在线精品一区二区 | 久久国产精品一区 | 中文字幕精品一区二区三区精品 | 国产精品一区二区三区在线 | 国产精品欧美日韩 | 成人久久久精品乱码一区二区三区 | 国产区一二 | 免费国产在线视频 | 久久精品国产一区 | 欧美影院一区二区三区 |