【題目】如圖,點O是線段AH上一點,AH=3,以點O為圓心,OA的長為半徑作⊙O,過點H作AH的垂線交⊙O于C,N兩點,點B在線段CN的延長線上,連接AB交⊙O于點M,以AB,BC為邊作ABCD.
(1)求證:AD是⊙O的切線;
(2)若OHAH,求四邊形AHCD與⊙O重疊部分的面積;
(3)若NHAH,BN
,連接MN,求OH和MN的長.
【答案】(1)證明見解析;(2);(3)OH
,MN
.
【解析】
(1)根據平行四邊形的性質可知AD∥BC,證明OA⊥AD,又因為OA為半徑,即可證明結論;
(2)利用銳角三角函數先求出∠OCH=30°,再求出扇形OAC的面積,最后求出△OHC的面積,兩部分面積相加即為重疊部分面積;
(3)設⊙O半徑OA=r=OC,OH=3-r,在Rt△OHC中,利用勾股定理求出半徑r=,推出OH=
,再在Rt△ABH和Rt△ACH中利用勾股定理分別求出AB,AC的長,最后證△BMN∽△BCA,利用相似三角形對應邊的比相等即可求出MN的長.
(1)證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∵∠AHC=90°,
∴∠HAD=90°,即OA⊥AD,
又∵OA為半徑,
∴AD是⊙O的切線;
(2)如圖,連接OC,
∵OHOA,AH=3,
∴OH=1,OA=2,
∵在Rt△OHC中,∠OHC=90°,OHOC,
∴∠OCH=30°,
∴∠AOC=∠OHC+∠OCH=120°,
∴S扇形OAC,
∵CH,
∴S△OHC1
,
∴四邊形ABCD與⊙O重疊部分的面積=S扇形OAC+S△OHC;
(3)設⊙O半徑OA=r=OC,OH=3﹣r,
在Rt△OHC中,OH2+HC2=OC2,
∴(3﹣r)2+12=r2,
∴r,則OH
,
在Rt△ABH中,AH=3,BH1
,則AB
,
在Rt△ACH中,AH=3,CH=NH=1,得AC,
在△BMN和△BCA中,
∠B=∠B,∠BMN=∠BCA,
∴△BMN∽△BCA,
∴即
,
∴MN,
∴OH,MN
.
科目:初中數學 來源: 題型:
【題目】綜合與探究:
如圖1,的直角頂點
在坐標原點,點
在
軸正半軸上,點
在
軸正半軸上,
,
,將線段
繞點
順時針旋轉
得到線段
,過點
作
軸于點
,拋物線
經過點
,與
軸交于點
,直線
與
軸交于點
.
(1)求點的坐標及拋物線的表達式;
(2)如圖2,已知點是線段
上的一個動點,過點
作
的垂線交拋物線于點
(點
在第一象限),設點
的橫坐標為
.
①點的縱坐標用含
的代數式表示為________;
②如圖3,當直線經過點
時,求點
的坐標,判斷四邊形
的形狀并證明結論;
③在②的前提下,連接,點
是坐標平面內的點,若以
,
,
為頂點的三角形與
全等,請直接寫出點
的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知, ,
與
成正比例,
與
成反比例,并且當
時,
,當
時,
.
()求
關于
的函數關系式.
()當
時,求
的值.
【答案】()
;(
)
,
.
【解析】分析:(1)首先根據與x成正比例,
與x成反比例,且當x=1時,y=4;當x=2時,y=5,求出
和
與x的關系式,進而求出y與x的關系式,(2)根據(1)問求出的y與x之間的關系式,令y=0,即可求出x的值.
本題解析:
()設
,
,
則,
∵當時,
,當
時,
,
∴
解得, ,
∴關于
的函數關系式為
.
()把
代入
得,
,
解得: ,
.
點睛:本題考查了用待定系數法求反比例函數的解析式:(1)設出含有待定系數的反比例函數解析式y=kx(k為常數,k≠0);(2)把已知條件(自變量與對應值)代入解析式,得到待定系數的方程;(3)解方程,求出待定系數;(4)寫出解析式.
【題型】解答題
【結束】
24
【題目】如圖,菱形的對角線
、
相交于點
,過點
作
且
,連接
、
,連接
交
于點
.
(1)求證:;
(2)若菱形的邊長為2,
.求
的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】農夫將蘋果樹種在正方形的果園內,為了保護蘋果樹不受風吹,他在蘋果樹的周圍種上針葉樹.在下圖里,你可以看到農夫所種植蘋果樹的列數(n)和蘋果樹數量及針葉樹數量的規律:當n為某一個數值時,蘋果樹數量會等于針葉樹數量,則n為___________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將矩形ABCD按如圖所示的方式折疊,BE,EG,FG為折痕,若頂點A,C,D都落在點O處,且點B,O,G在同一條直線上,同時點E,O,F在另一條直線上,則的值為( )
A.B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某專賣店有A、B兩種商品,已知在打折前,買60件A商品和30件B商品用了1080元,買50件A商品和10件B商品用了840元.A、B兩種商品打相同折以后,某人買500件A商品和450件B商品一共比不打折少花1960元,請問A、B兩種商品打折前各多少錢?打了多少折?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=ax+b的圖象與反比例函數的圖象交于C,D兩點,與x,y軸交于B,A兩點,且tan∠ABO=
,OB=4,OE=2.
(1)求一次函數的解析式和反比例函數的解析式;
(2)求△OCD的面積;
(3)根據圖象直接寫出一次函數的值大于反比例函數的值時,自變量x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本題滿分8分)如圖,⊙O的直徑AC與弦BD相交于點F,點E是DB延長線上一點,
∠EAB=∠ADB.
(1)求證:EA是⊙O的切線;
(2)已知點B是EF的中點,求證:以A、B、C為頂點的三角形與△AEF相似;
(3)在(2)的條件下,已知AF=4,CF=2,求AE的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com