【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示:下列4個結(jié)論
①abc<0
②b>2ac
③ax2+bx+c=0的兩根分別為﹣3和1
④a﹣2b+c>0
其中正確的是( 。
A.①②B.②③C.①②③D.①②③④
【答案】C
【解析】
由拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點判斷c與0的關(guān)系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.
①由拋物線開口向上可得a>0,由拋物線與y軸交于負半軸可得c<0,
由0可得b>0,所以abc<0,故結(jié)論①正確.
②拋物線的對稱軸1可得b﹣2a=0,則b=2a>0.
∵c<0,
∴2ac<0,
∴b>2ac,結(jié)論②正確;
③∵點(1,0)關(guān)于直線x=﹣1對稱的點的坐標為(﹣3,0),
∴拋物線與x軸的交點坐標為(﹣3,0)和(1,0),
∴ax2+bx+c=0的兩根分別為﹣3和1,結(jié)論③正確;
④∵拋物線與y軸的交點在x軸下方,
∴c<0.
∵a+b+c=0,b=2a,
∴c=﹣3a,
∴a﹣2b+c=a﹣4a﹣3a=﹣6a.
∵a>0,
∴﹣6a<0,
∴a﹣2b+c<0,結(jié)論④錯誤.
故正確的為①②③.
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】小剛根據(jù)以往的學習經(jīng)驗,想通過由“特殊到一般”的方法探究下面二次根式的運算規(guī)律.
以下是小剛的探究過程,請補充完整.
(1)具體運算,發(fā)現(xiàn)規(guī)律:
特例1:;特例2:
;特例3:
;
特例4:______(舉一個符合上述運算特征的例子);
(2)觀察、歸納,得出猜想:
如果為正整數(shù),用含
的式子表示這個運算規(guī)律:______;
(3)請你證明猜想的正確性.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是鈍角三角形,,圓O是△ABC的外接圓,直徑PQ恰好經(jīng)過AB的中點M,PQ與BC的交點為D,
,l為過點C圓的切線,作
,CF也為圓的直徑.
(1)證明:;
(2)已知圓O的半徑為3,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題發(fā)現(xiàn):
()如圖①,
中,
,
,
,點
是
邊上任意一點,則
的最小值為__________.
()如圖②,矩形
中,
,
,點
、點
分別在
、
上,求
的最小值.
()如圖③,矩形
中,
,
,點
是
邊上一點,且
,點
是
邊上的任意一點,把
沿
翻折,點
的對應(yīng)點為點
,連接
、
,四邊形
的面積是否存在最小值,若存在,求這個最小值及此時
的長度;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,點
,
分別是
,
的中點,連接
,
,
,且
,過點
作
交
的延長線于點
.
(1)求證:四邊形是菱形;
(2)在不添加任何輔助線和字母的情況下,請直接寫出圖中與面積相等的所有三角形(不包括
).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】經(jīng)中共中央決定設(shè)立河北雄安新區(qū),這一重大措施必將帶動首都及周邊區(qū)域向更高水平發(fā)展,同時也會帶來更多商機.某水果經(jīng)銷商在第一周購進一批水果1160件,預(yù)計在第二周進行試銷,購進價格為每件10元,若售價為每件12元,則可全部售出;若售價每漲價0.1元,銷量就減少2件.
(1)若該經(jīng)銷商在第二周的銷量不低于1100件,則售價應(yīng)不高于多少元?
(2)由于銷量較好,第三周水果進價比第一周每件增加了20%,該經(jīng)銷商增加了進貨量,并加強了宣傳力度,結(jié)果第三周的銷量比第二周在(1)條件下的最低銷量增加了m%,但售價比第二周在(1)條件下的最高售價減少了m%,結(jié)果第三周利潤達到3388元,求m的值(m>10).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:在數(shù)學課上,老師提出如下問題:
尺規(guī)作圖,過圓外一點作圓的切線.
已知:⊙O和點P
求過點P的⊙O的切線
小涵的主要作法如下:
如圖,(1)連結(jié)OP,作線段OP的中點A;
(2)以A為圓心,OA長為半徑作圓,交⊙O于點B,C;
(3)作直線PB和PC.
所以PB和PC就是所求的切線.
老師說:“小涵的做法正確的.”
請回答:小涵的作圖依據(jù)是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解我市居民用水情況,在某小區(qū)隨機抽查了20戶家庭,并將這些家庭的月用水量進行統(tǒng)計,結(jié)果如下表:
月用水量(噸) | 4 | 5 | 6 | 8 | 13 |
戶數(shù) | 4 | 5 | 7 | 3 | 1 |
則關(guān)于這20戶家庭的月用水量,下列說法正確的是( )
A.中位數(shù)是5B.平均數(shù)是5C.眾數(shù)是6D.方差是6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(1,0)、C(﹣2,3)兩點,與y軸交于點N,其頂點為D.
(1)求拋物線及直線AC的函數(shù)關(guān)系式;
(2)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值及此時點P的坐標;
(3)在對稱軸上是否存在一點M,使△ANM的周長最。舸嬖,請求出M點的坐標和△ANM周長的最小值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com