【題目】結合數軸與絕對值的知識回答下列問題:
(1)數軸上表示4和1的兩點之間的距離是 ;表示﹣3和2兩點之間的距離是 ;一般地,數軸上表示數m和數n的兩點之間的距離等于|m﹣n|.如果表示數a和﹣2的兩點之間的距離是3,那么a= ;
(2)若數軸上表示數a的點位于﹣4與2之間,求|a+4|+|a﹣2|的值;
(3)當a取何值時,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是多少?請說明理由.
科目:初中數學 來源: 題型:
【題目】如圖,一次函數分別交y軸、x 軸于A、B兩點,拋物線
過A、B兩點.
(1)求這個拋物線的解析式;
(2)作垂直x軸的直線x=t,在第一象限交直線AB于點M,交這個拋物線于點N.求當t 取何值時,MN有最大值?最大值是多少?
(3)在(2)的情況下,以A、M、N、D為頂點作平行四邊形,求第四個頂點D的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=x2﹣4x﹣m(m>0)與x軸交于A、B兩點,與y軸交于點C,D為拋物線的頂點,C點關于拋物線對稱軸的對稱點為C′點.
(1)若m=5時,求△ABD的面積.
(2)若在(1)的條件下,點E在線段BC下方的拋物線上運動,求△BCE面積的最大值.
(3)寫出C點( , )、C′點( , )坐標(用含m的代數式表示)
如果點Q在拋物線的對稱軸上,點P在拋物線上,以點C、C′、P、Q為頂點的四邊形是平行四邊形,直接寫出Q點和P點的坐標(可用含m的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=kx+b過點A(5,0)和點C,反比例函數y=(x<0)過點D,作BD∥x軸交y軸于點B(0,﹣3),且BD=OC,tan∠OAC=
.
(1)求反比例函數y=(x<0)和直線y=kx+b的解析式;
(2)連接CD,判斷線段AC與線段CD的關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一次函數y=mx+2的圖象經過點(﹣2,6).
(1)求m的值;
(2)畫出此函數的圖象;
(3)平移此函數的圖象,使得它與兩坐標軸所圍成的圖形的面積為4,請直接寫出此時圖象所對應的函數關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點,與y軸相交于點C,經過點A的直線y=﹣x+b與拋物線的另一個交點為D.
(1)若點D的橫坐標為2,求拋物線的函數解析式;
(2)若在第三象限內的拋物線上有點P,使得以A、B、P為頂點的三角形與△ABC相似,求點P的坐標;
(3)在(1)的條件下,設點E是線段AD上的一點(不含端點),連接BE.一動點Q從點B出發,沿線段BE以每秒1個單位的速度運動到點E,再沿線段ED以每秒個單位的速度運動到點D后停止,問當點E的坐標是多少時,點Q在整個運動過程中所用時間最少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有四張規格、質地相同的卡片,它們背面完全相同,正面圖案分別是A.平行四邊形,B.菱形,C.矩形,D.正方形,將這四張卡片背面朝上洗勻后.
(1)隨機抽取一張卡片圖案是軸對稱圖形的概率是 ;
(2)隨機抽取兩張卡片(不放回),求兩張卡片卡片圖案都是軸對稱圖形的概率,并用樹狀圖或列表法加以說明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,P是線段AB上一點,AB=12cm,C、D兩點分別從P、B出發以1cm/s、2cm/s的速度沿直線AB向左運動(C在線段AP上,D在線段BP上),運動的時間為t.
(1)當t=1時,PD=2AC,請求出AP的長;
(2)當t=2時,PD=2AC,請求出AP的長;
(3)若C、D運動到任一時刻時,總有PD=2AC,請求出AP的長;
(4)在(3)的條件下,Q是直線AB上一點,且AQ﹣BQ=PQ,求PQ的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把同樣大小的黑色棋子擺放在正多邊形的邊上,按照這樣的規律擺下去,則第五個圖形需要黑色棋子的個數是 ,第n個圖形需要黑色棋子的個數是 (n≥1,且n為整數).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com