【題目】如圖1,在正方形ABCD中,E是邊BC的中點,F是CD上一點,已知∠AEF=90°.
(1)求證:;
(2)平行四邊形ABCD中,E是邊BC上一點,F是邊CD上一點,∠AFE=∠ADC,∠AEF=90°.
①如圖2,若∠AFE=45°,求的值;
②如圖3,若AB=BC,EC=3CF,直接寫出cos∠AFE的值.
【答案】(1)見解析;(2)①;②cos∠AFE=
【解析】
(1)用特殊值法,設,則
,證
,可求出CF,DF的長,即可求出結論;
(2)①如圖2,過F作交AD于點G,證
和
是等腰直角三角形,證
,求出
的值,即可寫出
的值;②如圖3,作
交AD于點T,作
于H,證
,設CF=2,則CE=6,可設AT=x,則TF=3x,
,
,分別用含x的代數式表示出∠AFE和∠D的余弦值,列出方程,求出x的值,即可求出結論.
(1)設BE=EC=2,則AB=BC=4,
∵,
∴,
∵,
∴∠FEC=∠EAB,
又∴,
∴,
∴,
即,
∴CF=1,
則,
∴;
(2)①如圖2,過F作交AD于點G,
∵,
∴和
是等腰直角三角形,
∴,
,
∴∠AGF=∠C,
又∵,
∴∠GAF=∠CFE,
∴,
∴,
又∵GF=DF,
∴;
②如圖3,作交AD于點T,作
于H,
則,
∴,
∴∠ATF=∠C,
又∵,且∠D=∠AFE,
∴∠TAF=∠CFE,
∴,
∴,
設CF=2,則CE=6,可設AT=x,則TF=3x,,
∴,且
,
由,得
,
解得x=5,
∴.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知C(3,4),以點C為圓心的圓與y軸相切.點A、B在x軸上,且OA=OB.點P為⊙C上的動點,∠APB=90°,則AB長度的最大值為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,是上海世博園內的一個矩形花園,花園長為100米,寬為50米,在它的四角各建有一個同樣大小的正方形觀光休息亭,四周建有與觀光休息亭等寬的觀光大道,其余部分(圖中陰影部分)種植的是不同花草.已知種植花草部分的面積為3600米2,那么矩形花園各角處的正方形觀光休息亭的邊長為多少米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠DAB=45°,AB=2,P為線段AB上一動點,且不與點A重合,過點P作PE⊥AB交AD于點E,將∠A沿PE折疊,點A落在直線AB上點F處,連接DF、CF,當△CDF為等腰三角形時,AP的長是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】人們在長期的數學實踐中總結了許多解決數學問題的方法,形成了許多光輝的數學想法,其中轉化思想是中學教學中最活躍,最實用,也是最重要的數學思想,例如將不規則圖形轉化為規則圖形就是研究圖形問題比較常用的一種方法。
問題提出:求邊長分別為的三角形面積。
問題解決:在解答這個問題時,先建立一個正方形網格(每個小正方形的邊長為1),再在網格中畫出邊長分別為的格點三角形△ABC(如圖①),AB=
是直角邊為1和2的直角三角形斜邊,BC=
是直角邊分別為1和3的直角三角形的斜邊,AC=
是直角邊分別為2和3 的直角三角形斜邊,用一個大長方形的面積減去三個直角三角形的面積,這樣不需求△ABC的高,而借用網格就能計算出它的面積。
(1)請直接寫出圖①中△ABC的面積為_______________ 。
(2)類比遷移:求邊長分別為的三角形面積(請利用圖②的正方形網格畫出相應的△ABC,并求出它的面積)。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校計劃一次性購買排球和籃球,每個籃球的價格比排球貴30元;購買2個排球和3個籃球共需340元.
(1)求每個排球和籃球的價格:
(2)若該校一次性購買排球和籃球共60個,總費用不超過3800元,且購買排球的個數少于39個.設排球的個數為m,總費用為y元.
①求y關于m的函數關系式,并求m可取的所有值;
②在學校按怎樣的方案購買時,費用最低?最低費用為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,點F從菱形ABCD的頂點A出發,沿A→D→B以1cm/s的速度勻速運動到點B,圖2是點F運動時,△FBC的面積y(cm2)隨時間x(s)變化的關系圖象,則a的值為( 。
A. B. 2 C.
D. 2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y1=k1x+2與反比例函數y2=的圖象交于點A(4,m)和B(﹣8,﹣2),與y軸交于點C.
(1)k1= ,k2= ;
(2)根據函數圖象可知,當y1>y2時,x的取值范圍是 ;
(3)過點A作AD⊥x軸于點D,點P是反比例函數在第一象限的圖象上一點.設直線OP與線段AD交于點E,當S四邊形ODAC:S△ODE=3:1時,求直線OP的解析式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com