A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 ①由條件證明△ABD≌△ACE,就可以得到結(jié)論;
②由△ABD≌△ACE就可以得出∠ABD=∠ACE,就可以得出∠BDC=90°而得出結(jié)論;
③由條件知∠ABC=∠ABD+∠DBC=45°,由∠DBC+∠ACE=90°,就可以得出結(jié)論;
④△BDE為直角三角形就可以得出BE2=BD2+DE2,由△DAE和△BAC是等腰直角三角形就有DE2=2AD2,BC2=2AB2,就有BC2=BD2+CD2≠BD2就可以得出結(jié)論.
解答 解:①∵∠BAC=∠DAE,
∴∠BAC+∠DAC=∠DAE+∠DAC,
即∠BAD=∠CAE.
在△ABD和△ACE中,
∵$\left\{\begin{array}{l}{AD=AE}\\{∠BAD=∠CAE}\\{AB=AC}\end{array}\right.$,
∴△ABD≌△ACE(SAS),
∴BD=CE.故①正確;
∵△ABD≌△ACE,
∴∠ABD=∠ACE.
∵∠CAB=90°,
∴∠ABD+∠DBC+∠ACB=90°,
∴∠DBC+∠ACE+∠ACB=90°,
∴∠BDC=180°-90°=90°.
∴BD⊥CE;故②正確;
③∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ABD+∠DBC=45°.
∴∠ACE+∠DBC=45°,故③錯誤;
④∵BD⊥CE,
∴BE2=BD2+DE2.
∵∠BAC=∠DAE=90°,AB=AC,AD=AE,
∴DE2=2AD2,BC2=2AB2.
∵BC2=BD2+CD2≠BD2,
∴2AB2=BD2+CD2≠BD2,
∴BE2≠2(AD2+AB2).故④錯誤,
故選:B.
點評 本題考查了全等三角形的性質(zhì)和判定的應(yīng)用,垂直的性質(zhì)和判定的應(yīng)用,等腰直角三角形的性質(zhì)的應(yīng)用,勾股定理的應(yīng)用,能利用全等三角形的性質(zhì)和判定求解是解此題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{7}$ | B. | 3.14159 | C. | $\sqrt{2}$ | D. | 0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 一個數(shù)的相反數(shù)一定比0小 | |
B. | 互為相反數(shù)的兩個數(shù)的絕對值相等 | |
C. | 一個數(shù)的絕對值一定是正數(shù) | |
D. | 若兩個數(shù)的絕對值相等,則這兩個數(shù)相等 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | AB=A1B1 | B. | AB=A1C1 | C. | CA=A1C1 | D. | ∠A=∠C1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1:π | B. | 1:2π | C. | π:1 | D. | 2π:1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | -9 | C. | 11 | D. | -11 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com