【題目】用小立方體搭一個幾何體,使它的主視圖和俯視圖如圖所示,俯視圖中小正方形中字母表示在該位置小立方體的個數,請解答下列問題:
(1)求的值;
(2)這個幾何體最少有幾個小立方體搭成,最多有幾個小立方體搭成;
(3)當時畫出這個幾何體的左視圖.
【答案】(1)a=3,b=1,c=1.(2)9個,11個.(3)詳見解析
【解析】
(1)從此幾何體的主視圖中可以看出,最右邊為三層,從俯視圖中可以看出幾何體的最右邊只有一行,進而得出a的值,由主視圖得中間只有一層,從俯視圖看出幾何體中間有兩行,進而得出b、c的值;
(2)從(1)中得出幾何體的中間和最右邊的小正方體的個數是確定的,由俯視圖得幾何體的最底層有6個小正方體,從主視圖中看出最左邊有兩層,所以最左邊第二層最少1個,最多3個,進而解答即可;
(3)根據俯視圖中小正方形上的數字,即可畫出幾何體的左視圖.
根據題意作圖:
(1)從此幾何體的主視圖中可以看出,幾何體的最右邊有三層,從俯視圖中可以看出幾何體的最右邊只有一行,所以a=3,同理,從主視圖可以看出幾何體的中間只有一層,從俯視圖看出幾何體中間有兩行,所以b=1,c=1.
(2)從俯視圖可得出此幾何體的最底層肯定需要6個小正方體,從主視圖中看出此幾何體最左邊有兩層,所以最左邊最少需要再加1個,最多需要加3;
從(1)中得出幾何體中中間和最右邊的正方體數是確定的.所以要搭成此幾何體至少需要6+1+0+2=9個正方體,最多需要6+1+1+1+0+2=11個正方體.
(3)根據題意畫出幾何體的左視圖,如圖所示.
科目:初中數學 來源: 題型:
【題目】如圖,在由邊長均為1的小正方形組成的網格中,△ABC和△DEF的頂點都在格點(網格線的交點)上,請按要求完成下列各題.
(1)試證明△ABC是直角三角形;
(2)判斷△ABC和△DEF是否相似,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一個不透明的盒子中,裝有3個分別寫有數字6,﹣2,7的小球,他們的形狀、大小、質地完全相同,攪拌均勻后,先從盒子里隨機抽取1個小球,記下小球上的數字后放回盒子,攪拌均勻后再隨機取出1個小球,再記下小球上的數字.
(1)用列表法或樹狀圖法(樹狀圖也稱樹形圖)中的一種方法,寫出所有可能出現的結果;
(2)求兩次取出的小球上的數字相同的概率P.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,O為原點,點A(﹣,0),點B(0,1)把△ABO繞點O順時針旋轉,得△A'B'O,點A,B旋轉后的對應點為A',B',記旋轉角為α(0°<α<360°).
(1)如圖①,當點A′,B,B′共線時,求AA′的長.
(2)如圖②,當α=90°,求直線AB與A′B′的交點C的坐標;
(3)當點A′在直線AB上時,求BB′與OA′的交點D的坐標(直接寫出結果即可)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場有一個可以自由轉動的圓形轉盤(如圖).規定:顧客購物100元以上可以獲得一次轉動轉盤的機會,當轉盤停止時,指針落在哪一個區域就獲得相應的獎品(指針指向兩個扇形的交線時,當作指向右邊的扇形).下表是活動進行中的一組統計數據:
轉動轉盤的次數n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“鉛筆”的次數m | 68 | 111 | 136 | 345 | 546 | 701 |
落在“鉛筆”的頻率 (結果保留小數點后兩位) | 0.68 | 0.74 | 0.68 | 0.69 | 0.68 | 0.70 |
(1)轉動該轉盤一次,獲得鉛筆的概率約為_______;(結果保留小數點后一位)
(2)鉛筆每只0.5元,飲料每瓶3元,經統計該商場每天約有4000名顧客參加抽獎活動,請計算該商場每天需要支出的獎品費用;
(3)在(2)的條件下,該商場想把每天支出的獎品費用控制在3000元左右,則轉盤上“一瓶飲料”區域的圓心角應調整為______度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在二次函數y=-x2+bx+c中,函數y與自變量x的部分對應值如下表:
x | …… | -2 | 0 | 3 | 4 | …… |
y | …… | -7 | m | n | -7 | …… |
則m、n的大小關系為( )
A. m>n B. m<n C. m=n D. 無法確定
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com