日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
如圖所示,已知在直角梯形OABC中,AB∥OC,BC⊥x軸于點C,A(1,1)、B(3,1).動點P從O點出發,沿x軸正方向以每秒1個單位長度的速度移動.過P點作PQ垂直于直線OA,垂足為Q.設P點移動的時間為t秒(0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
(1)求經過O、A、B三點的拋物線解析式;
(2)求S與t的函數關系式;
(3)在運動過程中,是否存在某一時刻t,使得以C、P、Q為頂點的三角形與△OAB相似?若存在,求出t的值;若不存在,請說明理由.
(4)將△OPQ繞著點P順時針旋轉90°,是否存在t,使得△OPQ的頂點O或Q在拋物線上?若存在,直接寫出t的值;若不存在,請說明理由.

【答案】分析:(1)設出此拋物線的解析式,把A、B兩點的坐標代入此解析式求出a、b的值即可;
(2)由與t的取值范圍不能確定,故應分三種情況進行討論,
①當0<t≤2,重疊部分的面積是S△OPQ,過點A作AF⊥x軸于點F,在Rt△OPQ中利用三角形的面積公式及特殊角的三角函數值即可求出其面積;
②當2<t≤3,設PQ交AB于點G,作GH⊥x軸于點H,∠OPQ=∠QOP=45°,則四邊形OAGP是等腰梯形,
重疊部分的面積是S梯形OAGP,由梯形的面積公式即可求解;
③當3<t<4,設PQ與AB交于點M,交BC于點N,重疊部分的面積是S五邊形OAMNC
因為△PNC和△BMN都是等腰直角三角形,所以重疊部分的面積是S五邊形OAMNC=S梯形OABC-S△BMN,進而可求出答案;
(3)利用已知得出∠BAO=∠QPC,只要=或者=即可得出以C、P、Q為頂點的三角形與△OAB相似,進而求出即可;
(4)根據圖形旋轉的性質可求出將△OPQ繞著點P順時針旋轉90°時P、Q兩點的坐標,再根據拋物線的解析式即可求出t的值.
解答:解:(1)設拋物線解析式為y=ax2+bx(a≠0),將A.B點坐標代入得出:
解得:
故經過O、A、B三點的拋物線解析式為:y=-x2+x.

(2)①當0<t≤2時,重疊部分為△OPQ,過點A作AD⊥x軸于點D,
如圖1.
在Rt△AOD中,AD=OD=1,∠AOD=45°.
在Rt△OPQ中,OP=t,∠OPQ=∠QOP=45°.
∴OQ=PQ=t.
∴S=S△OPQ=OQ•PQ=×t=t2(0<t≤2);
②當2<t≤3時,設PQ交AB于點E,重疊部分為梯形AOPE,
作EF⊥x軸于點F,如圖2.∵∠OPQ=∠QOP=45°
∴四邊形AOPE是等腰梯形∴AE=DF=t-2.
∴S=S梯形AOPE=(AE+OP)•AD=(t-2+t)×1
=t-1(2<t≤3);
③當3<t<4時,設PQ交AB于點E,交BC于點F,
重疊部分為五邊形AOCFE,如圖3.
∵B(3,1),OP=t,∴PC=CF=t-3.
∵△PFC和△BEF都是等腰直角三角形
∴BE=BF=1-(t-3)=4-t
∴S=S五邊形AOCFE=S梯形OABC-S△BEF
=(2+3)×1-(4-t)2
=-t2+4t-(3<t<4);

(3)連接QC,OB,
∵AB∥OC,
∴∠BAO+∠AOC=180°,
∵∠AOC=45°,∠OQP=90°,
∴∠QPO=45°,
∵∠QPO+∠QPC=180°,
∴∠BAO=∠QPC,
只要=或者=即可得出以C、P、Q為頂點的三角形與△OAB相似,
得出:3-t=×t 或3-t=×t
解得:t=2或t=

(4)存在,t1=1,t2=2.
將△OPQ繞著點P順時針旋轉90°,此時Q(t+),O(t,t)
①當點Q在拋物線上時,=-×(t+2+×(t+),
解得t=2;
②當點O在拋物線上時,t=-t2+t,
解得:t=1.
點評:本題考查了二次函數綜合題,涉及到用待定系數法求二次函數的解析式,三角形的面積公式、梯形的面積公式及圖形旋轉的性質,涉及面較廣,難度較大.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖所示,已知在直角梯形OABC中,AB∥OC,BC⊥x軸于點C、A(1,1)、B(3,1).動點P從O點出發,沿x軸正方向以每秒1個單位長度的速度移動.過P點作PQ垂直于直線OA,垂足為Q.設P點移動的時間為t秒(精英家教網0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
(1)求經過O、A、B三點的拋物線解析式;
(2)求S與t的函數關系式;
(3)將△OPQ繞著點P順時針旋轉90°,是否存在t,使得△OPQ的頂點O或Q在拋物線上?若存在,直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖所示,已知在直角梯形OABC中,AB∥OC,BC⊥x軸于點C.A(1,1)、B(3,1).動點P從O點出發,沿x軸正方向以每秒1個單位長度的速度移動.過P點作PQ垂精英家教網直于直線OA,垂足為Q,設P點移動的時間為t秒(0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
(1)求經過O、A、B三點的拋物線解析式;
(2)求S與t的函數關系式;
(3)將△OPQ繞著點P順時針旋轉90°,是否存t,使得△OPQ的頂點O或Q在拋物線上?若存在,直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

6、如圖所示,已知在直角梯形ABCD中,∠B=∠C=90°,E為BC上的點,且EA=ED,∠AEB=75°,∠DEC=45°,試說明AB=BC.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖所示,已知在直角梯形OABC中,AB∥OC,BC⊥x軸于點C,A(1,1)、B(3,1).動點P從O點出發,沿x軸正方向以每秒1個單位長度的速度移動.過P點作PQ垂直于直線OA,垂足為Q.設P點移動的時間為t秒(0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
(1)求經過O、A、B三點的拋物線解析式;
(2)求S與t的函數關系式;
(3)在運動過程中,是否存在某一時刻t,使得以C、P、Q為頂點的三角形與△OAB相似?若存在,求出t的值;若不存在,請說明理由.
(4)將△OPQ繞著點P順時針旋轉90°,是否存在t,使得△OPQ的頂點O或Q在拋物線上?若存在,直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖所示,已知在直角三角形紙片ABC中,BC=3,∠BAC=30°,在AC上取一點E,以BE為折痕,使AB的一部分與BC重合,A與BC延長線上的點D重合,則DE的長度為(  )

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 成人亚洲 | 日韩一区二区三区免费 | 在线激情视频 | 成人免费视频网站在线观看 | 国产精品久久久久久亚洲调教 | 99re国产精品视频 | 免费观看亚洲 | 亚洲日本韩国在线观看 | 国产视频h | 国产精品国产成人国产三级 | 日韩电影中文字幕 | 视频一区二区三 | 操操网 | 日韩在线成人 | 99国内精品久久久久久久 | 亚洲成人免费视频 | 亚洲一区二区三区国产 | 成人亚洲精品 | 一区二区三区视频免费观看 | 国产在线精品一区二区 | 国产精品久久久久9999 | h片免费| 在线一区视频 | 久久91 | 久久久97| 黄色在线免费观看 | 黄色片免费在线观看 | 亚洲男人天堂2023 | 国产一区二区三区免费观看 | 国产麻豆乱码精品一区二区三区 | 一级黄色av片 | 成人免费一区二区三区视频网站 | 精品久久久久久久 | 久久青青| 日韩精品在线一区 | 国产传媒在线 | 欧美性猛交一区二区三区精品 | 91精品国产91综合久久蜜臀 | 欧美午夜视频在线观看 | 天天操天天干天天做 | 青青久久|