【題目】如圖所示,一根長2a的木棍,斜靠在與地面
垂直的墻
上,設木棍的中點為
若木棍A端沿墻下滑,且B端沿地面向右滑行.
請判斷木棍滑動的過程中,點P到點O的距離是否變化,并簡述理由.
在木棍滑動的過程中,當滑動到什么位置時,
的面積最大?簡述理由,并求出面積的最大值.
【答案】(1)斜邊上的中線OP不變;(2)當的斜邊上的高h等于中線OP時,
為等腰直角三角形時,面積最大,理由見解析
【解析】試題分析:(1)木棍滑動的過程中,點P到點O的距離不會變化.根據在直角三角形中,斜邊上的中線等于斜邊的一半即可判斷;
(2)當△AOB的斜邊上的高h等于中線OP時,△AOB的面積最大,就可以求出.
試題解析:(1)不變。
理由:在直角三角形中,斜邊上的中線等于斜邊的一半,因為斜邊AB不變,所以斜邊上的中線OP不變。
(2)當△AOB的斜邊上的高h等于中線OP時,△AOB的面積最大。
如圖,若h與OP不相等,則總有h<OP,
故根據三角形面積公式,有h與OP相等時△AOB的面積最大
此時,S△AOB=AB·h=
×2a·a=a2,所以△AOB的最大面積為a2.
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,E是對角線BD上一點,且滿足BE=BC.連接CE并延長交AD于點F,連接AE,過B點作BG⊥AE于點G,延長BG交AD于點H.在下列結論中:
①AH=DF; ②∠AEF=45°; ③S四邊形EFHG=S△DEF+S△AGH,
其中正確的結論有_____________________.(填正確的序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,AB為半圓的直徑,O為圓心,C為圓弧上一點,AD垂直于過C點的切線,垂足為D,AB的延長線交直線CD于點E.
(1)求證:AC平分∠DAB;
(2)若AB=4,B為OE的中點,CF⊥AB,垂足為點F,求CF的長;
(3)如圖②,連接OD交AC于點G,若,求sinE的值.
【答案】(1)證明見解析;(2)CF=;(3) sinE=
.
【解析】分析:(1)連接OC,由平行線的判定定理、性質以及三角形中的等角對等邊的原理即可求證。(2)由(1)中結論,利用特殊角的三角函數值可求出∠E=30和CF的長度。(3)連接OC,即可證得△OCG∽△DAG,△OCE∽△DAE,根據相似三角形的對應邊成比例,可得EO與AO的比例關系,又因為OC=OA,所以在RT△OCE中由三角函數的定義即可求解。
本題解析:(1)連接OC,如圖①.∵OC切半圓O于C,∴OC⊥DC,又AD⊥CD.∴OC∥AD.∴∠OCA=∠DAC.∵OC=OA,∴∠OAC=∠ACO.∴∠DAC=∠CAO,即AC平分∠DAB.
(2)在Rt△OCE中,∵OC=OB=OE,∴∠E=30°.
∴在Rt△OCF中,CF=OC·sin60°=2×=
.
(3)連接OC,如圖②.∵CO∥AD,∴△CGO∽△AGD.∴=
=
.不妨設CO=AO=3k,則AD=4k.又△COE∽△DAE,∴
=
=
=
.∴EO=9k.在Rt△COE中,sinE=
=
=
.
【題型】解答題
【結束】
25
【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長恰與另一塊等腰直角三角板ODC的斜邊OC的長相等,把這兩塊三角板放置在平面直角坐標系中,且OB=3.
(1)若某反比例函數的圖象的一個分支恰好經過點A,求這個反比例函數的解析式;
(2)若把含30°角的直角三角板繞點O按順時針方向旋轉后,斜邊OA恰好落在x軸上,點A落在點A′處,試求圖中陰影部分的面積.(結果保留π)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的高,AE是∠BAC的平分線,∠EAD=15°,∠B=40°.
(1)求∠C的度數.
(2)若:∠EAD=α,∠B=β,其余條件不變,直接寫出用含α,β的式子表示∠C的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店購進45件A商品和20件B商品共用了800元,購進60件A商品和35件B商品共用了1100元.
(1)A、B兩種商品的單價分別是多少元?
(2)已知該商店購進B商品的件數比購進A商品件數的2倍少4件,如果需要購進A、B兩種商品的總件數不少于32件,且該商店購進A、B兩種商品的總費用不超過296元,那么該商店有幾種購進方案?并寫出所有可能的購進方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,AD=6cm,CD=8cm,BC=BD=10cm,點P由B出發沿BD方向勻速運動,速度為
1cm/s;同時,線段EF由DC出發沿DA方向勻速運動,速度為1cm/s,交BD于Q,連接PE.若設運動時間為t(s)(0<t<5).解答下列問題:
(1)當t為何值時,PE∥AB?
(2)是否存在某一時刻t,使S△DEQ=?若存在,求出此時t的值;若不存在,說明理由.
(3)如圖2連接PF,在上述運動過程中,五邊形PFCDE的面積是否發生變化?說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E在AB邊上,沿CE折疊矩形ABCD,使點B落在AD邊上的點F處,若AB=4,BC=5,則tan∠AFE的值為___.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com