日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
已知:在四邊形ABCD中,AD∥BC,∠BAC=∠D,點E、F分別在BC、CD上,且∠AEF=∠ACD,試探究AE與EF之間的數量關系.
(1)如圖1,若AB=BC=AC,則AE與EF之間的數量關系是什么;
(2)如圖2,若AB=BC,你在(1)中得到的結論是否發生變化?寫出猜想,并加以證明;
(3)如圖3,若AB=kBC,你在(1)中得到的結論是否發生變化?寫出猜想不用證明.

【答案】分析:(1)中所給的是最特殊的一種情況,但對整個題來說,要從(1)中找到基本的解題思路,此題難的是構造全等三角形,從而證明線段相等.雖然(1)中沒有要求步驟,但能正確的解出(1)可以給(2)和(3)定一個基調;
(2)是將(1)中的等邊三角形變為等腰三角形,但起關鍵作用的條件沒變,任然可以仿照(1)中的方法去做;
(3)中將三角形變為更一般的三角形,但和(1)比較起來還是有兩個條件沒變,而利用這兩個條件能證明兩個三角形相似,從而利用相似的對應邊成比例得出結論.
解答:解:(1)AE=EF;
證明:如圖1,過點E作EH∥AB交AC于點H.
則∠BAC+∠AHE=180°,∠BAC=∠CHE,
∵AB=BC=AC,
∴∠BAC=∠ACB=60°,
∴∠CHE=∠ACB=∠B=60°,
∴EH=EC.
∵AD∥BC,
∴∠FCE=180°-∠B=120°,
又∵∠AHE=180°-∠BAC=120°,
∴∠AHE=∠FCE,
∵∠AOE=∠COF,∠AEF=∠ACF,
∴∠EAC=∠EFC,
∴△AEH≌△FEC,
∴AE=EF;


(2)猜想:(1)中的結論是沒有發生變化.
證明:如圖2,過點E作EH∥AB交AC于點H,則∠BAC+∠AHE=180°,∠BAC=∠CHE,
∵AB=BC,
∴∠BAC=∠ACB
∴∠CHE=∠ACB,
∴EH=EC
∵AD∥BC,
∴∠D+∠DCB=180°.
∵∠BAC=∠D,
∴∠AHE=∠DCB=∠ECF
∵∠AOE=∠COF,∠AEF=∠ACF,
∴∠EAC=∠EFC,
∴△AEH≌△FEC,
∴AE=EF;

(3)猜想:(1)中的結論發生變化.
證明:如圖3,過點E作EH∥AB交AC于點H.
由(2)可得∠EAC=∠EFC,
∵AD∥BC,∠BAC=∠D,
∴∠AHE=∠DCB=∠ECF,
∴△AEH∽△FEC,
∴AE:EF=EH:EC,
∵EH∥AB,
∴△ABC∽△HEC,
∴EH:EC=AB:BC=k,
∴AE:EF=k,
∴AE=kEF.
點評:主要考查了全等三角形的判定.本題三問由特殊到一般,注意比較它們之間的異同,關鍵抓住不變量,從而得出結論.本題難度很大.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

23、(1)如圖1,已知直線m∥n,A,B為直線n上的兩點,C,D為直線m上的兩點.
①請你判斷△ABC與△ABD的面積具有怎樣的關系?
②若點D在直線m上可以任意移動,△ABD的面積是否發生變化?并說明你的理由.
(2)如圖2,已知:在四邊形ABCD中,連接AC,過點D作EF∥AC,P為EF上任意一點(與點D不重合).請你說明四邊形ABCD的面積與四邊形ABCP的面積相等.
(3)如圖3是一塊五邊形花壇的示意圖.為了使其更規整一些,園林管理人員準備將其修整為四邊形,根據花壇周邊的情況,計劃在BC的延長線上取一點F,沿EF取直,構成新的四邊形ABFE,并使得四邊形ABFE的面積與五邊形ABCDE的面積相等.請你在圖3中畫出符合要求的四邊形ABFE,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知:在Rt△ABC中,∠ABC=90°,以直角邊AB為直徑作⊙O,⊙O與斜邊AC交于點D,E為BC邊的中點,連接DE.
(1)求證:DE是⊙O的切線;
(2)連接OE,若四邊形AOED是平行四邊形,求∠CAB的大小.

查看答案和解析>>

科目:初中數學 來源: 題型:

22、已知,在等腰△ABC中,AB=AC,分別延長BA,CA到D,E點,使DA=AB,EA=CA,則四邊形BCDE是(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:在Rt△ABC中,∠BCA=90°,AC=3,BC=4,CD是斜邊AB邊上的高,點E、F分別是AC、BC邊上的動點,連接DE、DF、EF,且∠EDF=90°.

(1)當四邊形CEDF是矩形時(如圖1),試求EF的長并直接判斷△DEF與△DAC是否相似.
(2)在點E、F運動過程中(如圖2),△DEF與△DAC相似嗎?請說明理由;
(3)設直線DF與直線AC相交于點G,△EFG能否為等腰三角形?若能,請直接寫出線段AE的長;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知,在四邊形ABCD中,AD∥BC,BD平分∠ABC,∠A=120°,CD=4cm,∠ABC=∠DCB,求BC的長.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 在线免费av观看 | 国产一区二区三区四区在线观看 | 欧美午夜视频在线观看 | 欧美综合一区二区三区 | 亚洲视频手机在线观看 | 日韩欧美成人影院 | 成人免费视频一区二区 | 国产伦理片在线免费观看 | 欧美 日韩 国产 成人 在线 | 日韩成人免费视频 | 欧美天堂在线 | av一区二区三区 | 亚洲三级在线播放 | 久久最新网址 | 久久久久极品 | a√毛片| 99草草 | av网站在线免费观看 | 在线看91 | 国产自在线 | 青青草人人 | 九九久久99 | 青青草欧美 | 免费国产视频 | 亚洲欧美综合精品久久成人 | 97人人爱| 国产精品成人在线观看 | 中文字幕一区二区三区精彩视频 | 亚洲日本韩国欧美 | 日韩激情免费 | 久久久a| www.色综合| 午夜影院普通用户体验区 | 午夜一区二区在线观看 | 色综合天天 | 久久99精品热在线观看 | 久久h| 久久精品国产99国产精品 | 在线污污| 欧美性猛交一区二区三区精品 | 蜜桃av导航 |