日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

閱讀下列材料:

在圖1中,正方形ABCD的邊長為a,等腰直角三角形FAE的斜邊AE=2b,且邊AD和AE在同一直線上.

小明的做法:當2b<a時,如圖1,在BA上選取點G,使BG=b,連結FG和CG,裁掉△FAG和△CGB并分別拼接到△FEH和△CHD的位置構成四邊形FGCH.

小明在操作后發現:該剪拼方法就是先將△FAG繞點F逆時針旋轉90°到△FEH的位置,易知EH與AD在同一直線上.連結CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,從而又可將△CGB繞點C順時針旋轉90°到△CHD的位置.這樣,對于剪拼得到的四邊形FGCH(如圖1),過點F作FM⊥AE于點M(圖略),利用SAS公理可判斷△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.

進而根據正方形的判定方法,可以判斷出四邊形FGCH是正方形.

解決下列問題:

(1)正方形FGCH的面積是________;(用含ab的式子表示)

(2)類比圖1的剪拼方法,請你就圖2的三種情形分別畫出剪拼成一個新正方形的示意圖.

答案:
解析:

  解:(1)a2b2  1分

  (2)剪拼方法(每圖1分)


練習冊系列答案
相關習題

科目:初中數學 來源: 題型:閱讀理解

閱讀下列材料:
在圖1-圖4中,正方形ABCD的邊長為a,等腰直角三角形FAE的斜邊AE=2b,且邊AD和AE在同一直線上.
小明的做法:當2b<a時,如圖1,在BA上選取點G,使BG=b,連接FG和CG,裁掉△FAG和△CGB并分別拼接到△FEH和△CHD的位置構成四邊形FGCH.
小明在操作后發現:該剪拼方法就是先將△FAG繞點F逆時針旋轉90°到△FEH的位置,易知EH與AD在同一直線上.連接CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,從而又可將△CGB繞點C順時針旋轉90°到△CHD的位置.這樣,對于剪拼得到的四邊形FGCH(如圖1),過點F作FM⊥AE于點M(圖略),利用SAS公理可判斷△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.
進而根據正方形的判定方法,可以判斷出四邊形FGCH是正方形.
解決下列問題:
(1)正方形FGCH的面積是
 
;(用含a,b的式子表示)
(2)類比圖1的剪拼方法,請你就圖2-圖4的三種情形分別畫出剪拼成一個新正方形的示意圖.精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

閱讀下列材料:
在圖1-圖4中,正方形ABCD的邊長為a,等腰直角三角形FAE的斜邊AE=2b,且邊AD和AE在同一直線上.
小明的做法:當2b<a時,如圖1,在BA上選取點G,使BG=b,連接FG和CG,裁掉△FAG和△CGB并分別拼接到△FEH和△CHD的位置構成四邊形FGCH.
小明在操作后發現:該剪拼方法就是先將△FAG繞點F逆時針旋轉90°到△FEH的位置,易知EH與AD在同一直線上.連接CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,從而又可將△CGB繞點C順時針旋轉90°到△CHD的位置.這樣,對于剪拼得到的四邊形FGCH(如圖1),過點F作FM⊥AE于點M(圖略),利用SAS公理可判斷△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.
進而根據正方形的判定方法,可以判斷出四邊形FGCH是正方形.
解決下列問題:
(1)正方形FGCH的面積是______;(用含a,b的式子表示)
(2)類比圖1的剪拼方法,請你就圖2-圖4的三種情形分別畫出剪拼成一個新正方形的示意圖.

查看答案和解析>>

科目:初中數學 來源:2012年學大教育中考數學模擬試卷(二)(解析版) 題型:解答題

閱讀下列材料:
在圖1-圖4中,正方形ABCD的邊長為a,等腰直角三角形FAE的斜邊AE=2b,且邊AD和AE在同一直線上.
小明的做法:當2b<a時,如圖1,在BA上選取點G,使BG=b,連接FG和CG,裁掉△FAG和△CGB并分別拼接到△FEH和△CHD的位置構成四邊形FGCH.
小明在操作后發現:該剪拼方法就是先將△FAG繞點F逆時針旋轉90°到△FEH的位置,易知EH與AD在同一直線上.連接CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,從而又可將△CGB繞點C順時針旋轉90°到△CHD的位置.這樣,對于剪拼得到的四邊形FGCH(如圖1),過點F作FM⊥AE于點M(圖略),利用SAS公理可判斷△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.
進而根據正方形的判定方法,可以判斷出四邊形FGCH是正方形.
解決下列問題:
(1)正方形FGCH的面積是______;(用含a,b的式子表示)
(2)類比圖1的剪拼方法,請你就圖2-圖4的三種情形分別畫出剪拼成一個新正方形的示意圖.

查看答案和解析>>

科目:初中數學 來源:2010年北京市門頭溝區中考數學一模試卷(解析版) 題型:解答題

(2010•門頭溝區一模)閱讀下列材料:
在圖1-圖4中,正方形ABCD的邊長為a,等腰直角三角形FAE的斜邊AE=2b,且邊AD和AE在同一直線上.
小明的做法:當2b<a時,如圖1,在BA上選取點G,使BG=b,連接FG和CG,裁掉△FAG和△CGB并分別拼接到△FEH和△CHD的位置構成四邊形FGCH.
小明在操作后發現:該剪拼方法就是先將△FAG繞點F逆時針旋轉90°到△FEH的位置,易知EH與AD在同一直線上.連接CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,從而又可將△CGB繞點C順時針旋轉90°到△CHD的位置.這樣,對于剪拼得到的四邊形FGCH(如圖1),過點F作FM⊥AE于點M(圖略),利用SAS公理可判斷△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.
進而根據正方形的判定方法,可以判斷出四邊形FGCH是正方形.
解決下列問題:
(1)正方形FGCH的面積是______;(用含a,b的式子表示)
(2)類比圖1的剪拼方法,請你就圖2-圖4的三種情形分別畫出剪拼成一個新正方形的示意圖.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品永久 | 中文字幕二三区不卡 | 中文字幕成人免费视频 | 亚洲福利片 | 男女www视频 | 欧美一区二区久久久 | 免费欧美一级 | 特级淫片裸体免费看 | 97av在线视频| 国产精品久久久久久久久久 | 日韩中文字幕在线观看 | 在线免费视频成人 | 国产精品视频入口 | 黄色视屏免费观看 | 国产精品2区 | 精品国模一区二区三区欧美 | 狠狠91 | 国产精品一区二区免费视频 | 久久天堂热 | 99视频只有精品 | 99久久久国产精品 | 天天爽天天操 | 国精产品一区二区三区 | 欧美lesbianxxxxhd视频社区 | av毛片在线免费看 | 日韩专区在线播放 | av在线不卡播放 | 亚洲精品一二三区 | 成人a网| 欧美a一区 | 免费精品 | 亚洲激情久久 | 亚洲精品久久久久久一区二区 | 91精品国产色综合久久不卡98口 | 中文字幕在线观看 | 日韩中文字幕在线免费 | 日韩精品一区二区三区中文在线 | 超碰日韩| 国产精品免费观看 | 欧美亚洲日本国产 | 国产高清一区二区 |