【題目】如圖,一艘海輪在A點時測得燈塔C在它的北偏東42°方向上,它沿正東方向航行80海里后到達B處,此時燈塔C在它的北偏西55°方向上.
(1)求海輪在航行過程中與燈塔C的最短距離(結果精確到0.1);
(2)求海輪在B處時與燈塔C的距離(結果保留整數).
(參考數據:sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)
【答案】
(1)
解:過C作AB的垂線交AB于點D,
根據題意可得:∠1=∠2=42°,∠3=∠4=55°,
設CD的長為x海里,
在Rt△ACD中,tan42°= ,則AD=xtan42°,
在Rt△BCD中,tan55°= ,則BD=xtan55°,
∵AB=80,
∴AD+BD=80,
∴xtan42°+xtan55°=80,
解得:x≈34.4,
答:海輪在航行過程中與燈塔C的最短距離是34.4海里
(2)
解:在Rt△BCD中,cos55°= ,
∴BC= ≈60海里,
答:海輪在B處時與燈塔C的距離約為60海里
【解析】(1)過C作AB的垂線,設垂足為D,則CD的長為海輪在航行過程中與燈塔C的最短距離;(2)在Rt△BCD中,根據55°角的余弦值即可求出海輪在B處時與燈塔C的距離.
【考點精析】解答此題的關鍵在于理解關于方向角問題的相關知識,掌握指北或指南方向線與目標方向 線所成的小于90°的水平角,叫做方向角.
科目:初中數學 來源: 題型:
【題目】下列命題正確的是( )
A. 任意兩個矩形一定相似 B. 相似圖形就是位似圖形
C. 如果點是線段
的黃金分割點,那么
D. 有一個銳角相等的兩個直角三角形相似
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】張華在一次數學活動中,利用“在面積一定的矩形中,正方形的周長最短”的結論,推導出“式子x+ (x>0)的最小值是2”.其推導方法如下:在面積是1的矩形中設矩形的一邊長為x,則另一邊長是
,矩形的周長是2(x+
);當矩形成為正方形時,就有x=
(x>0),解得x=1,這時矩形的周長2(x+
)=4最小,因此x+
(x>0)的最小值是2.模仿張華的推導,你求得式子
(x>0)的最小值是( )
A.2
B.1
C.6
D.10
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算下列各題
(1)計算:( ﹣2)0+(﹣1)2014+
﹣sin45°;
(2)先化簡,再求值:(a2b+ab)÷ ,其中a=
+1,b=
﹣1.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,AB=AC,∠BAC=90
,直角∠EPF的頂點是BC的中點,兩邊PE,PF分別交AB,AC于點E,F.給出以下五個結論:(1)AE=CF;(2)∠APE =∠CPF;(3)△EPF是等腰直角三角形;(4)
=
(5)EF=AP其中一定成立的有________個.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】學習成為現代人的時尚,某市有關部門統計了最近6個月到圖書館的讀者的職業分布情況,并做了下列兩個不完整的統計圖.
(1)在統計的這段時間內,共有萬人次到圖書館閱讀,其中商人占百分比為%;
(2)將條形統計圖補充完整;
(3)若5月份到圖書館的讀者共28000人次,估計其中約有多少人次讀者是職工?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.
(1)求證:△ACE≌△ACF;
(2)若AB=21,AD=9,AC=17,求CF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB、AC邊的垂直平分線分別交BC邊于點M、N.
(1)如圖①,若△AMN是等邊三角形,則∠BAC= °;
(2)如圖②,若∠BAC=135°,求證:BM2+CN2=MN2.
(3)如圖③,∠ABC的平分線BP和AC邊的垂直平分線相交于點P,過點P作PH垂直BA的延長線于點H.若AB=4,CB=10,求AH的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com