日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
如圖,把正方形ACFG與Rt△ACB按如圖(甲)所示重疊在一起,其中AC=2,∠BAC=60°,若把Rt△ACB繞直角頂點C按順時針方向旋轉,使斜邊AB恰好經過正方形ACFG的頂點F,得△A′B′C′,A B分別與A′C,A′B′相交于D、E,如圖(乙)所示.
①△ACB至少旋轉多少度才能得到△A′B′C′?說明理由;
②求△ACB與△A′B′C′的重疊部分(即四邊形CDEF)的面積(若取近似值,則精確到0.1)?
【答案】分析:(1)根據題意,結合旋轉的性質:可得△A′CF是等邊三角形,進而可得∠ACA′=90°-60°=30°,故至少應旋轉30°;
(2)根據題意分別求得△A′DE的面積與△ABC的面積;觀察圖形分析可得四邊形DCFE的面積為:S△A’CF-S△A′DE,代入數據可得答案.
解答:解:(1)∵ACFG是正方形,A'B′經過點F,
∴A′C=CF.
又∵∠A′=60°,
∴△A′CF是等邊三角形.(2分)
∵∠A′CF=60°,
∴∠ACA′=90°-60°=30°.
∴△ABC至少旋轉30°才能得到△A′CB′.(5分)

(2)∵∠ACA′=30°,∠BAC=60°,
∴∠A′DE=90°.
又∵AC=2,
可求得CD=,A′D=2-.(6分)
在Rt△A′DE中,
DE=A′Dtan60°=(2-)•=2-3.
∴△A′DE的面積為:A′D•DE=(2-)•(2-3)=.(8分)
又∵A'B′=4,A′F=2,
∴F是A'B′的中點.
∴△A′CF的面積=△ABC的面積.
而B′C=A′C•tan60°=2
∴S△ABC=×2×2=2,S△A’CF=
∴四邊形DCFE的面積為:-()=-+6=6-.(10分)
(若取近似值,則結果應約為1.7.)
點評:解答本題要充分利用正方形的特殊性質.注意在正方形中的特殊三角形的應用,搞清楚矩形、菱形、正方形中的三角形的三邊關系,可有助于提高解題速度和準確率.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•南安市質檢)如圖,已知△ABC,點A在BC邊的上方,把△ABC繞點B逆時針方向旋轉60°得△DBE,繞點C順時針方向旋轉60°得△FEC,連結AD、AF.
(1)判斷:△ABD、△ACF、△BCE是什么特殊三角形?(可直接寫出答案)
(2)當△ABC滿足什么條件時,四邊形ADEF是正方形?請說明理由;
(3)當△ABC滿足什么條件時,以A、D、E、F為頂點的四邊形不存在?請說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 四虎成人网 | 精品综合网| 国产成人综合在线 | jlzzjlzz欧美大全| 人人爽人人澡 | 女人av在线| 国产精品毛片久久久久久久 | 国产伦理一区二区 | 亚洲福利视频一区 | 美国式禁忌14在线 | 久久精品播放 | 精品一区三区 | 九色在线视频 | 久久久精品 | 国产黄色精品视频 | 黄色大片av | 欧美精品乱码99久久蜜桃 | 天天综合网站 | 求av网站 | 亚洲综合区 | 国产精品一区二区三区在线 | 9l蝌蚪porny中文自拍 | 日一日操一操 | 午夜精品久久久久久久99 | 97中文字幕 | 日韩看片| 精品久久久久久久久久久久久 | av福利网| 国产一区二区三区四区 | 黄色小说视频网站 | 日韩综合精品 | 国产成人毛片 | 日韩一区二区三区在线 | 久久久久一区 | 国产一区二区精品在线 | 精品日韩一区二区三区 | 欧美精品综合 | a毛片免费看 | 欧美国产综合 | 日本在线观看 | 日韩av一二三区 |