【題目】如圖,已知等邊△ABC,延長△ABC的各邊分別到點D、E、F使得AE=BF=CD,順次連接D、E、F,求證:△DEF是等邊三角形.
科目:初中數學 來源: 題型:
【題目】如圖,AB為半圓O在直徑,AD、BC分別切⊙O于A、B兩點,CD切⊙O于點E,連接OD、OC,下列結論:①∠DOC=90°,②AD+BC=CD,③S△AOD:S△BOC=AD2:AO2,④OD:OC=DE:EC,⑤OD2=DECD,正確的有( )
A.2個 B.3個 C.4個 D.5個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,有一個池塘,其底面是邊長為10尺的正方形,一個蘆葦AB生長在它的中央,高出水面部分BC為1尺.如果把該蘆葦沿與水池邊垂直的方向拉向岸邊,那么蘆葦的頂部B恰好碰到岸邊的B′.則這根蘆葦的長度是( )
A. 10尺 B. 11尺 C. 12尺 D. 13尺
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=-x+8與x軸交于A點,與y軸交于B點,動點P從A點出發,以每秒2個單位的速度沿AO方向向點O勻速運動,同時動點Q從B點出發,以每秒1個單位的速度沿BA方向向點A勻速運動,當一個點停止運動,另一個點也隨之停止運動,連接PQ,設運動時間為t(s)(0<t≤3).
(1)寫出A,B兩點的坐標;
(2)當t為何值時,以點A,P,Q為頂點的三角形與△ABO相似,并直接寫出此時點Q的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點A(﹣3,y1)、點B(﹣,y2)、點C(
,y3)在該函數圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結論有( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,∠B=90°,點D為直線BC上一個動點(不與B,C重合),連結AD.將線段AD繞點D按順吋針方向旋轉90°得到線段DE,連結EC.
(1)如圖1,點D在線段BC上,依題意畫圖得到圖2.
①求證:∠BAD=∠EDC;
②方方同學通過觀察、測量得出結論:在點D運動的過程中,總有∠DCE=135°.方方的主要思路有以下幾個:
思路一:在AB上取一點F使得BF=BD,要證∠DCE=135°,只需證△ADF≌△DEC.
思路二:以點D為圓心,DC為半徑畫弧交AC于點F,要證∠DCE=135°,只需證△AFD≌△ECD.
思路三:過點E作BC所在直線的垂線段EF,要證∠DCE=135°,只需證EF=CF.
……
請你參考井選擇其中一個思路,證明∠DCE=135°;
(2)如果點D在線段CB的延長線上運動,利用圖3畫圖分析,∠DCE的度數還是確定的值嗎?如果是,請寫出∠DCE的度數并說明理由;如果不是,也請說明你的理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有兩個內角分別是它們對角的一半的四邊形叫做半對角四邊形
(1)如圖1,在半對角四邊形ABCD中,∠B=∠D,∠C=
∠A,求∠B與∠C的度數之和;
(2)如圖2,銳角△ABC內接于⊙O,若邊AB上存在一點D,使得BD=BO,∠OBA的平分線交OA于點E,連結DE并延長交AC于點F,∠AFE=2∠EAF.求證:四邊形DBCF是半對角四邊形;
(3)如圖3,在(2)的條件下,過點D作DG⊥OB于點H,交BC于點G,當DH=BG=2時,求⊙O的直徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某種商品的成本是元,試銷階段每件商品的售價
(元)與產品的銷售量
(件)滿足當
時,
,當
時,
,且
是
的一次函數,為了獲得最大利潤
(元),每件產品的銷售價應定為( )
A. 160元 B. 180元 C. 140元 D. 200元
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=ax2+bx+c圖象的一部分,圖象過點A(﹣3,0),對稱軸為直線x=﹣1.
①c>0;②2a﹣b=0;③<0;④若點B(﹣
,y1),C(﹣
,y2)為函數圖象上的兩點,則y1>y2;四個結論中正確的是_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com