【題目】在“一帶一路”倡議下,我國已成為設施聯通,貿易暢通的促進者,同時也帶動了我國與沿線國家的貨物交換的增速發展,如圖是湘成物流園2016年通過“海、陸(汽車)、空、鐵”四種模式運輸貨物的統計圖. 請根據統計圖解決下面的問題:
(1)該物流園2016年貨運總量是多少萬噸?
(2)該物流園2016年空運貨物的總量是多少萬噸?并補全條形統計圖;
(3)求條形統計圖中陸運貨物量對應的扇形圓心角的度數
【答案】
(1)解:2016年貨運總量是120÷50%=240噸
(2)解:2016年空運貨物的總量是240×15%=36噸,
條形統計圖如下:
(3)解:陸運貨物量對應的扇形圓心角的度數為 ×360°=18°
【解析】(1)根據鐵運的貨運量以及百分比,即可得到物流園2016年貨運總量;(2)根據空運的百分比,即可得到物流園2016年空運貨物的總量,并據此補全條形統計圖;(3)根據陸運的百分比乘上360°,即可得到陸運貨物量對應的扇形圓心角的度數.
【考點精析】認真審題,首先需要了解扇形統計圖(能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數目以及事物的變化情況),還要掌握條形統計圖(能清楚地表示出每個項目的具體數目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況)的相關知識才是答題的關鍵.
科目:初中數學 來源: 題型:
【題目】某蔬菜加工公司先后兩批次收購蒜薹(tái)共100噸.第一批蒜薹價格為4000元/噸;因蒜薹大量上市,第二批價格跌至1000元/噸.這兩批蒜苔共用去16萬元.
(1)求兩批次購進蒜薹各多少噸?
(2)公司收購后對蒜薹進行加工,分為粗加工和精加工兩種:粗加工每噸利潤400元,精加工每噸利潤1000元.要求精加工數量不多于粗加工數量的三倍.為獲得最大利潤,精加工數量應為多少噸?最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣a﹣b(a<0,a、b為常數)與x軸交于A、C兩點,與y軸交于B點,直線AB的函數關系式為y= x+
.
(1)求該拋物線的函數關系式與C點坐標;
(2)已知點M(m,0)是線段OA上的一個動點,過點M作x軸的垂線l分別與直線AB和拋物線交于D、E兩點,當m為何值時,△BDE恰好是以DE為底邊的等腰三角形?
(3)在(2)問條件下,當△BDE恰好是以DE為底邊的等腰三角形時,動點M相應位置記為點M′,將OM′繞原點O順時針旋轉得到ON(旋轉角在0°到90°之間);
i:探究:線段OB上是否存在定點P(P不與O、B重合),無論ON如何旋轉, 始終保持不變,若存在,試求出P點坐標;若不存在,請說明理由;
ii:試求出此旋轉過程中,(NA+ NB)的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線的對稱軸是y軸,且點(2,2),(1, )在拋物線上,點P是拋物線上不與頂點N重合的一動點,過P作PA⊥x軸于A,PC⊥y軸于C,延長PC交拋物線于E,設M是O關于拋物線頂點N的對稱點,D是C點關于N的對稱點.
(1)求拋物線的解析式及頂點N的坐標;
(2)求證:四邊形PMDA是平行四邊形;
(3)求證:△DPE∽△PAM,并求出當它們的相似比為 時的點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一扇窗戶垂直打開,即OM⊥OP , AC是長度不變的滑動支架,其中一端固定在窗戶的點A處,另一端C在OP上滑動,將窗戶OM按圖示方向向內旋轉37°到達ON位置,此時,點A、C的對應位置分別是點B、D.測量出∠ODB為28°,點D到點O的距離為30cm .
(1)求B點到OP的距離;
(2)求滑動支架的長.(結果精確到0.1)(數據:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53,sin 53°≈0.8,cos53°≈0.6,tan53°≈1.33)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將函數y=f(x)的圖象向左平移φ(0<φ<π)個單位后得到函數g(x)=sin2x的圖象,當x1 , x2滿足時,|f(x1)﹣g(x2)|=2, ,則φ的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知函數f(x)=|x|+|x﹣3|.
(1)解關于x的不等式f(x)﹣5≥x;
(2)設m,n∈{y|y=f(x)},試比較mn+4與2(m+n)的大。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com