日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

已知∠AOB=90°,OM是∠AOB的平分線,將一個直角三角板的直角頂點P放在射線OM上,OP=m(m為常數(shù)且m≠0),移動直角三角板,兩邊分別交射線OA,OB與點C,D
(1)如圖,當點C、D都不與點O重合時,求證:PC=PD;
(2)聯(lián)結(jié)CD,交OM于E,設CD=x,PE=y,求y與x之間的函數(shù)關系式;
(3)如圖,若三角板的一條直角邊與射線OB交于點D,另一直角邊與直線OA,直線OB分別交于點C,F(xiàn),且△PDF與△OCD相似,求OD的長.

【答案】分析:(1)作PH⊥OA于H,PN⊥OB于N,根據(jù)角平分線的性質(zhì)可得PM=PG,根據(jù)ASA可證△PCM≌△PDN,根據(jù)全等三角形的性質(zhì)可得PC=PD;
(2)根據(jù)AA可證△PDE∽△POD,根據(jù)相似三角形的性質(zhì),等腰直角三角形的性質(zhì)即可得到y(tǒng)與x之間的函數(shù)關系式;
(3)分①點C在AO上,根據(jù)相似三角形的性質(zhì)和線段垂直平分線的性質(zhì)即可求得OD的長;②點C在AO的延長線上,△PDF與△OCD相似只能是∠1=∠2,根據(jù)等腰直角三角形的性質(zhì)可得∠BDC=45°,然后求出∠1=22.5°,過點P作PG⊥OM交OD于G,根據(jù)等腰直角三角形的性質(zhì)求出OG,根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠3=22.5°,從而得到∠1=∠3,根據(jù)等角對等邊的性質(zhì)可得PG=DG=m,然后根據(jù)OD=OG+DG計算即可得解.
解答:(1)證明:作PH⊥OA于H,PN⊥OB于N,
則∠PHC=∠PND=90°,
則∠HPC+∠CPN=90°
∵∠CPN+∠NPD=90°
∴∠HPC=∠NPD,
∵OM是∠AOB的平分線
∴PH=PN,∠POB=45°,
∵在△PCH與△PDN中,

∴△PCH≌△PDN(ASA)
∴PC=PD;

(2)解:∵PC=PD,
∴∠PDC=45°,
∴∠POB=∠PDC,
∵∠DPE=∠OPD,
∴△PDE∽△POD,
∴PE:PD=PD:PO,
又∵PD2=CD2
∴PE=x2,即y與x之間的函數(shù)關系式為y=x2

(3)①如圖1,點C在AO上時,∵∠PDF>∠CDO,
令△PDF∽△OCD,
∴∠DFP=∠CDO,
∴CF=CD,
∵CO⊥DF
∴OF=OD
∴OD=DF=OP=m;
②如圖2,點C在AO的延長線上時,
△PDF與△OCD相似,若∠2=∠PFD,則PC∥CD,與PC、DC相交于點C矛盾,
所以,只能是∠1=∠2,
由(1)可知PC=PD,
∴△PCD是等腰直角三角形,
∴∠1+∠2=45°,
∴∠1=22.5°,
過點P作PG⊥OM交OD于G,
∵∠AOB=90°,OM是∠AOB的平分線,
∴△POG是等腰直角三角形,
∴OG=OP=m,
PG=OP=m,
∵∠1+∠3=∠PGO=45°,
∴∠3=22.5°,
∴∠1=∠3,
∴PG=DG=m,
∴OD=OG+DG=m+m=(+1)m,
綜上所述,OD的長為:m或(+1)m.
點評:本題主要考查了直角三角形的性質(zhì),全等三角形的判定與性質(zhì)以及相似三角形的判定和性質(zhì)等知識點,根據(jù)三角形相似或全等得出線段之間以及角之間的關系是解題的關鍵,(3)要分情況討論,容易漏解而導致出錯.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系中,△AOB的位置如圖所示,已知∠AOB=90°,AO=BO,點A的坐標為(-3精英家教網(wǎng),1).
(1)求點B的坐標;
(2)求過A,O,B三點的拋物線的解析式;
(3)設點B關于拋物線的對稱軸l的對稱點為B1,求△AB1B的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知∠AOB=90°,OM是∠AOB的平分線,將一個直角RPS的直角頂點P在射線OM上移動,精英家教網(wǎng)點P不與點O重合.
(1)如圖,當直角RPS的兩邊分別與射線OA、OB交于點C、D時,請判斷PC與PD的數(shù)量關系,并證明你的結(jié)論;
(2)如圖,在(1)的條件下,設CD與OP的交點為點G,且PG=
3
2
PD
,求
GD
OD
的值;
(3)若直角RPS的一邊與射線OB交于點D,另一邊與直線OA、直線OB分別交于點C、E,且以P、D、E為頂點的三角形與△OCD相似,請畫出示意圖;當OD=1時,直接寫出OP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、已知∠AOB=90°,OC為一射線,OM,ON分別平分∠BOC和∠AOC,求∠MON的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知∠AOB=90°,∠AOC=60°,OD平分∠BOC,OE平分∠AOC.
(1)求∠DOE的度數(shù).
(2)如果原題中∠AOC=60°改為∠AOC是銳角,能否求出∠DOE?若能求出來;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)如圖,已知∠AOB=90°,∠BOC=30°,OM平分∠AOB,ON平分∠BOC,求∠MON的度數(shù);
(2)如果(1)中∠AOB=α,∠BOC=β(β為銳角),其他條件不變,求∠MON的度數(shù);
(3)從(1)、(2)的結(jié)果中能得出什么結(jié)論?

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: a免费在线观看 | 久久av一区二区三区 | 91xxx在线观看 | 日韩在线观看精品 | 精品国产一区二区三区在线观看 | 国内在线一区 | 国产一级免费看 | 久久久91 | 国产精品九九 | 黄色的网站免费看 | 在线观看免费视频亚洲 | 成人免费一区 | 精品影视一区二区 | 美女二区| 狠狠躁夜夜躁人人爽视频 | 日韩欧美国产一区二区 | a在线天堂 | 蜜桃av一区| 久久久久99 | 久久久中文字幕 | 在线一区观看 | 中文字幕在线永久 | 免费黄色激情视频 | 99久久网站 | 91亚洲成人 | 亚洲免费一区二区 | 黄色欧美一级片 | 精品国产髙清在线看国产毛片 | 91人人看 | 99久久婷婷国产精品综合 | 午夜免费观看网站 | 欧美日韩中文在线观看 | 欧美区在线 | 天天操天天干天天做 | 久久国产精品精品 | 免费v片在线观看 | 狠狠综合久久 | 天天干夜夜爽 | 在线观看免费av的网址 | 91精品一区二区三区久久久久久 | 久久99精品久久久 |