日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,點F為BE中點,連接DF、CF.
(1)如圖1,當點D在AB上,點E在AC上,請直接寫出此時線段DF、CF的數量關系和位置關系(不用證明);
(2)如圖2,在(1)的條件下將△ADE繞點A順時針旋轉45°時,請你判斷此時(1)中的結論是否仍然成立,并證明你的判斷;
(3)如圖3,在(1)的條件下將△ADE繞點A順時針旋轉90°時,若AD=1,AC=,求此時線段CF的長(直接寫出結果).

【答案】分析:(1)根據“直角三角形斜邊上的中線等于斜邊的一半”可知DF=BF,根據∠DFE=2∠DCF,∠BFE=2∠BCF,得到∠EFD+∠EFB=2∠DCB=90°,DF⊥BF.
(2)延長DF交BC于點G,先證明△DEF≌△GCF,得到DE=CG,DF=FG,根據AD=DE,AB=BC,得到BD=BG又因為∠ABC=90°,所以DF=CF且DF⊥BF.
(3)延長DF交BA于點H,先證明△DEF≌△HBF,得到DE=BH,DF=FH,根據旋轉條件可以△ADH為直角三角形,由△ABC和△ADE是等腰直角三角形,AC=,可以求出AB的值,進而可以根據勾股定理可以求出DH,再求出DF,由DF=BF,求出得CF的值.
解答:解:(1)∵∠ACB=∠ADE=90°,點F為BE中點,
∴DF=BE,CF=BE,
∴DF=CF.
∵△ABC和△ADE是等腰直角三角形,
∴∠ABC=45°
∵BF=DF,
∴∠DBF=∠BDF,
∵∠DFE=∠ABE+∠BDE,
∴∠DFE=2∠DBE,
同理得:∠CFE=2∠CBF,
∴∠EFD+∠EFC=2∠DBF+2∠CBF=2∠ABC=90°,
∴DF=CF,且DF⊥CF.
(2)(1)中的結論仍然成立.
證明:如圖,此時點D落在AC上,延長DF交BC于點G.
∵∠ADE=∠ACB=90°,
∴DE∥BC.
∴∠DEF=∠GBF,∠EDF=∠BGF.
∵F為BE中點,
∴EF=BF.
∴△DEF≌△GBF.
∴DE=GB,DF=GF.
∵AD=DE,
∴AD=GB,
∵AC=BC,
∴AC-AD=BC-GB,
∴DC=GC.
∵∠ACB=90°,
∴△DCG是等腰直角三角形,
∵DF=GF.
∴DF=CF,DF⊥CF.
(3)延長DF交BA于點H,
∵△ABC和△ADE是等腰直角三角形,
∴AC=BC,AD=DE.
∴∠AED=∠ABC=45°,
∵由旋轉可以得出,∠CAE=∠BAD=90°,
∵AE∥BC,
∴∠AEB=∠CBE,
∴∠DEF=∠HBF.
∵F是BE的中點,
∴EF=BF,
∴△DEF≌△HBF,
∴ED=HB,
∵AC=,在Rt△ABC中,由勾股定理,得
AB=4,
∵AD=1,
∴ED=BH=1,
∴AH=3,在Rt△HAD中由勾股定理,得
DH=
∴DF=
∴CF=
∴線段CF的長為

點評:主要考查了旋轉的性質,等腰三角形和全等三角形的判定,及勾股定理的運用.要掌握等腰三角形和全等三角形的性質及其判定定理并會靈活應用是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,點F為BE中點,連接DF、CF.
(1)如圖1,當點D在AB上,點E在AC上,請直接寫出此時線段DF、CF的數量關系和位置關系(不用證明);
(2)如圖2,在(1)的條件下將△ADE繞點A順時針旋轉45°時,請你判斷此時(1)中的結論是否仍然成立,并證明你的判斷;
(3)如圖3,在(1)的條件下將△ADE繞點A順時針旋轉90°時,若AD=1,AC=2
2
,求此時線段CF的長(直接寫出結果).

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•南崗區二模)如圖,已知△ABC和△DBE均為等腰直角三角形,∠ABC=∠DBE=90°,求證:AD=CE.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知△ABC和△BAD中,AC=DB,若不增加任何字母與輔助線,要證明△ABC≌△BAD;則還需要增加一個條件是
AD=BC
AD=BC

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知△ABC和△ABD均為等腰直角三角形,∠ACB=∠BAD=90°,點P為邊AC上任意一點(點P不與A、C兩點重合),作PE⊥PB交AD于點E,交AB于點F.
(1)求證:∠AEP=∠ABP.
(2)猜想線段PB、PE的數量關系,并證明你的猜想.
(3)若P為AC延長線上任意一點(如圖②),PE交DA的延長線于點E,其他條件不變,(2)中的結論是否成立?請證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知△ABC和△A′B′C′,AD是BC邊上的高,A′D′是B′C′邊上的高,AD=A′D′,AB=A′B′,AC=A′C′,則∠C和∠C′的關系是
不一定相等
不一定相等
.(填“相等”“不一定相等”或“一定不相等”)

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲黄色成人 | 九九热视频在线 | 国产精品高潮99久久久久久久 | 久久久久久久 | 国产精品久久精品 | 一本大道久久a久久精二百 精品一区二区三区免费毛片爱 | 久久精品久久久久电影 | 久久久精品一区 | 免费在线视频精品 | 中文字幕_第2页_高清免费在线 | 久久久123 | 日韩一区二区在线观看 | 天天草夜夜操 | 国产美女在线观看精品 | 久久三区| 伊人免费观看视频 | 国产高潮在线观看 | 日韩中文字幕免费观看 | 国产精品久久精品久久 | 最新中文字幕在线 | 青青av在线 | 亚洲欧洲一区二区 | 亚洲精品66| 国产精品成人国产乱一区 | av手机在线播放 | 最新午夜综合福利视频 | 精品国产成人 | 欧美日韩成人 | 波多野结衣一区二 | 国产成人中文字幕 | 一区二区日韩在线观看 | 国产视频第一页 | 中文字幕在线免费 | 一区二区视频在线 | 在线观看91| 一级女性全黄久久生活片免费 | 午夜激情视频在线 | 日本久久久久久久久久久久 | 电影午夜精品一区二区三区 | 国产精品自拍视频 | 国产精品一区在线看 |