【題目】如圖,在菱形中,
,
,點
是
邊的中點,點
是
邊上一動點(不與點
重合),延長
交射線
于點
,連接
,
.
(1)求證:四邊形是平行四邊形;
(2)填空:
①當的值為_______時,四邊形
是矩形;
②當的值為______時,四邊形
是菱形.
科目:初中數學 來源: 題型:
【題目】在平行四邊形ABCD中,對角線AC,BD交于點O,AB=10,AO=6,BO=8,則下列結論中,錯誤的是( ) .
A.AC⊥BDB.四邊形ABCD是菱形
C.AC=BCD.△ABO≌△CDO
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】每年的6月5日為世界環保日,為了提倡低碳環保,某公司決定購買12臺節能新設備,現有甲乙兩種型號的設備可供選購,經調查,購4臺甲比購3臺乙多用18萬元,購3臺甲比購4臺乙少用4萬元。
(1)求甲乙兩種設備的單價。
(2)該公司決定購買甲設備不少于5臺,購買資金不超過136萬元,你認為該公司有幾種購買方案?并直接寫出最省錢的購買方案。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)閱讀理解:如圖1,在中,若
,
.求
邊上的中線
的取值范圍.小聰同學是這樣思考的:延長
至
,使
,連結
.利用全等將邊
轉化到
,在
中利用三角形三邊關系即可求出中線
的取值范圍.在這個過程中小聰同學證三角形全等用到的判定方法是__________;中線
的取值范圍是__________.
(2)問題解決:如圖2,在中,點
是
的中點,點
在
邊上,點
在
邊上,若
.求證:
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,四邊形ABCD是平行四邊形,延長BA至點E,使AE=AB,連接CE、DE、AC,CE與AD交于點F.
(1)求證:四邊形ACDE是平行四邊形;
(2)若∠AFC=2∠B.求證:四邊形ACDE是矩形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀材料,請回答下列問題.
材料一:我國古代數學家秦九韶在《數書九章》中記述了“三斜求積術”,即已知三角形的三邊長,求它的面積,用現代式子表示即為:①(其中
為三角形的三邊長,
為面積),而另一個文明古國古希臘也有求三角形面積的“海倫公式”;
……②(其中
)
材料二:對于平方差公式:公式逆用可得:
,例:
(1)若已知三角形的三邊長分別為4,5,7,請分別運用公式①和公式②,計算該三角形的面積;
(2)你能否由公式①推導出公式②?請試試,寫出推導過程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c的圖象如圖,則下列敘述正確的是( )
A. abc<0 B. -3a+c<0
C. b2-4ac≥0 D. 將該函數圖象向左平移2個單位后所得到拋物線的解析式為y=ax2+c
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,且BA=9,AC=12,點D是斜邊BC上的一個動點,過點D分別作DE⊥AB于點E,DF⊥AC于點F,點G為四邊形DEAF對角線交點,則線段GF的最小值為_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知任意一個三角形的三個內角的和是180°,如圖1,在ABC中,∠ABC的角平分線BO與∠ACB的角平分線CO的交點為O.
(1)若∠A=70°,求∠BOC的度數;
(2)若∠A=α,求∠BOC的度數;
(3)如圖2,若BO、CO分別是∠ABC、∠ACB的三等分線,也就是∠OBC=∠ABC,∠OCB=
∠ACB,∠A=α,求∠BOC的度數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com