日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

已知實數x滿足,則代數式的值為________.

答案:2
解析:

方程可變形為,解得.所以


練習冊系列答案
相關習題

科目:初中數學 來源: 題型:閱讀理解

閱讀下列范例,按要求解答問題.
例:已知實數a,b,c滿足:a+b+2c=1,a2+b2+6c+
3
2
=0
,求a,b,c的值.
解:∵a+b+2c=1,∴a+b=1-2c,
a=
1-2c
2
+t,b=
1-2c
2
-t

a2+b2+6c+
3
2
=0

將①代入②得:(
1-2c
2
+t)2+(
1-2c
2
-t)2+6c+
3
2
=0

整理得:t2+(c2+2c+1)=0,即t2+(c+1)2=0,∴t=0,c=-1
將t,c的值同時代入①得:a=
3
2
,b=
3
2
.∴a=b=
3
2
,c=-1

以上解法是采用“均值換元”解決問題.一般地,若實數x,y滿足x+y=m,則可設x=
m
2
+t,y=
m
2
-t
,合理運用這種換元技巧,可順利解決一些問題.現請你根據上述方法試解決下面問題:
已知實數a,b,c滿足:a+b+c=6,a2+b2+c2=12,求a,b,c的值.

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

閱讀下列范例,按要求解答問題.
例:已知實數a、b、c滿足a+b+2c=1,a2+b2+6c+
3
2
=0,求a、b、c的值.
解法1:由已知得a+b=1-2c,①(a+b)2-2ab+6c+
3
2
=0.②
將①代入②,整理得4c2+2c-2ab+
5
2
=0.∴ab=2c2+c+
5
4

由①、③可知,a、b是關于t的方程t2-(1-2c)t+2c2+c+
5
4
=0④的兩個實數根.
∴△=(1-2c)2-4(2c2+c+
5
4
≥0,即(c+1)2≤0.而(c+1)2≥0,∴c+l=0,c=-1,
將c=-1代入④,得t2-3t+
9
4
=0.∴t1=t2=
3
2
,即a=b=
3
2
.∴a=b,c=-1.
解法2∵a+b+2c=1,∴a+b=1-2c、設a=
1-2c
2
+t,b=
1-2c
2
-t.①
∵a2+b2+6c+
3
2
=0,∴(a+b)2-2ab+6c+
3
2
=0.②
將①代入②,得(1-2c)2-2(
1-2c
2
+t)(
1-2c
2
-t)
+6c+
3
2
=0.
整理,得t2+(c2+2c+1)=0,即t2+(c+1)2=0.∴t=0,c=-1.
將t、c的值同時代入①,得a=
3
2
,b=
3
2
.a=b=
3
2
,c=-1.
以上解法1是構造一元二次方程解決問題.若兩實數x、y滿足x+y=m,xy=n,則x、y是關于t的一元二次方程t2-mt+n=0的兩個實數根,然后利用判別式求解.
以上解法2是采用均值換元解決問題.若實數x、y滿足x+y=m,則可設x=
m
2
+t,y=
m
2
-t.一些問題根據條件,若合理運用這種換元技巧,則能使問題順利解決.
下面給出兩個問題,解答其中任意一題:
(1)用另一種方法解答范例中的問題.
(2)選用范例中的一種方法解答下列問題:
已知實數a、b、c滿足a+b+c=6,a2+b2+c2=12,求證:a=b=c.

查看答案和解析>>

科目:初中數學 來源:藁城市一模 題型:解答題

閱讀下列范例,按要求解答問題.
例:已知實數a,b,c滿足:a+b+2c=1,a2+b2+6c+
3
2
=0
,求a,b,c的值.
∵a+b+2c=1,∴a+b=1-2c,
a=
1-2c
2
+t,b=
1-2c
2
-t

a2+b2+6c+
3
2
=0

將①代入②得:(
1-2c
2
+t)2+(
1-2c
2
-t)2+6c+
3
2
=0

整理得:t2+(c2+2c+1)=0,即t2+(c+1)2=0,∴t=0,c=-1
將t,c的值同時代入①得:a=
3
2
,b=
3
2
.∴a=b=
3
2
,c=-1

以上解法是采用“均值換元”解決問題.一般地,若實數x,y滿足x+y=m,則可設x=
m
2
+t,y=
m
2
-t
,合理運用這種換元技巧,可順利解決一些問題.現請你根據上述方法試解決下面問題:
已知實數a,b,c滿足:a+b+c=6,a2+b2+c2=12,求a,b,c的值.

查看答案和解析>>

科目:初中數學 來源:2010年河北省石家莊市藁城市中考數學一模試卷(解析版) 題型:解答題

閱讀下列范例,按要求解答問題.
例:已知實數a,b,c滿足:,求a,b,c的值.
解:∵a+b+2c=1,∴a+b=1-2c,


將①代入②得:
整理得:t2+(c2+2c+1)=0,即t2+(c+1)2=0,∴t=0,c=-1
將t,c的值同時代入①得:.∴
以上解法是采用“均值換元”解決問題.一般地,若實數x,y滿足x+y=m,則可設,合理運用這種換元技巧,可順利解決一些問題.現請你根據上述方法試解決下面問題:
已知實數a,b,c滿足:a+b+c=6,a2+b2+c2=12,求a,b,c的值.

查看答案和解析>>

科目:初中數學 來源:2002年湖北省荊門市中考數學試卷(解析版) 題型:解答題

(2002•荊門)閱讀下列范例,按要求解答問題.
例:已知實數a、b、c滿足a+b+2c=1,a2+b2+6c+=0,求a、b、c的值.
解法1:由已知得a+b=1-2c,①(a+b)2-2ab+6c+=0.②
將①代入②,整理得4c2+2c-2ab+=0.∴ab=2c2+c+
由①、③可知,a、b是關于t的方程t2-(1-2c)t+2c2+c+=0④的兩個實數根.
∴△=(1-2c)2-4(2c2+c+≥0,即(c+1)2≤0.而(c+1)2≥0,∴c+l=0,c=-1,
將c=-1代入④,得t2-3t+=0.∴t1=t2=,即a=b=.∴a=b,c=-1.
解法2∵a+b+2c=1,∴a+b=1-2c、設a=+t,b=-t.①
∵a2+b2+6c+=0,∴(a+b)2-2ab+6c+=0.②
將①代入②,得(1-2c)2-2+6c+=0.
整理,得t2+(c2+2c+1)=0,即t2+(c+1)2=0.∴t=0,c=-1.
將t、c的值同時代入①,得a=,b=.a=b=,c=-1.
以上解法1是構造一元二次方程解決問題.若兩實數x、y滿足x+y=m,xy=n,則x、y是關于t的一元二次方程t2-mt+n=0的兩個實數根,然后利用判別式求解.
以上解法2是采用均值換元解決問題.若實數x、y滿足x+y=m,則可設x=+t,y=-t.一些問題根據條件,若合理運用這種換元技巧,則能使問題順利解決.
下面給出兩個問題,解答其中任意一題:
(1)用另一種方法解答范例中的問題.
(2)選用范例中的一種方法解答下列問題:
已知實數a、b、c滿足a+b+c=6,a2+b2+c2=12,求證:a=b=c.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美日韩福利 | 欧美日韩在线视频一区 | 亚洲一区久久 | 欧美激情第二页 | 久久国内免费视频 | 亚州成人 | 色婷婷中文字幕 | 精品久久99| 风间由美一区二区三区在线观看 | 中文字幕在线视频免费观看 | 在线观看免费毛片视频 | 少妇撒尿一区二区在线视频 | 国产精品99久久久久久久久 | 99福利视频 | 国产美女高潮一区二区三区 | 国产精品二区一区二区aⅴ污介绍 | 一区二区三区视频免费在线观看 | 午夜精品一区二区三区在线视频 | 久久人人爽爽人人爽人人片av | 精品久久久久久国产 | 狠狠撸在线视频 | 超碰网址| 日韩精品免费在线观看 | 狠狠色视频| 亚洲日韩欧美一区二区在线 | 国产一区二区三区免费观看 | 久久久精品网站 | 国产亚洲成av人片在线观看桃 | 久久国产精品亚洲 | 欧美在线视频一区 | 一级一级毛片 | 亚洲人人| 久久久久中文字幕 | www.久久| 黄色毛片观看 | 成人精品久久久 | 日韩精品一区二区视频 | 久久久网站| 国产在线资源 | 欧美一区二区三区在线视频 | 在线观看黄色av网站 |