【題目】如圖,等腰梯形ABCD中,AB∥CD,AB=2CD,AC交BD于點O,點E、F分別為AO、BO的中點,則下列關于點O成中心對稱的一組三角形是( )
A.△ABO與△CDO
B.△AOD與△BOC
C.△CDO與△EFO
D.△ACD與△BCD
【答案】C
【解析】利用全等三角形的判定方法得到△CDO與△EFO全等,即其是關于點O成中心對稱的一組三角形.
∵點E、F分別為AO、BO的中點,
∴AB=2EF,EF∥AB,
∵AB∥CD,
∴CD∥EF,
∴∠CDO=∠OFE,∠DCO=∠FEO,
∵AB=2CD,AB=2EF,
∴EF=CD,
∴△CDO≌△EFO,
即關于點O成中心對稱的一組三角形是△CDO與△EFO.
故選C.
【考點精析】本題主要考查了等腰梯形的性質和中心對稱及中心對稱圖形的相關知識點,需要掌握等腰梯形的兩腰相等;同一底上的兩個角相等;兩條對角線相等;如果把一個圖形繞著某一點旋轉180度后能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱;如果把一個圖形繞著某一點旋轉180度后能與自身重合,那么我們就說,這個圖形成中心對稱圖形才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知拋物線y=ax2+bx﹣2(a≠0)與x軸交于A(1,0)、B(3,0)兩點,與y軸交于點C,其頂點為點D,點E的坐標為(0,﹣1),該拋物線與BE交于另一點F,連接BC.
(1)求該拋物線的解析式,并用配方法把解析式化為y=a(x﹣h)2+k的形式;
(2)若點H(1,y)在BC上,連接FH,求△FHB的面積;
(3)一動點M從點D出發,以每秒1個單位的速度平沿行與y軸方向向上運動,連接OM,BM,設運動時間為t秒(t>0),在點M的運動過程中,當t為何值時,∠OMB=90°?
(4)在x軸上方的拋物線上,是否存在點P,使得∠PBF被BA平分?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】課題小組從某市20000名九年級男生中,隨機抽取了1000名進行50米跑測試,并根據測試結果制成了如下的統計表.
等級 | 人數/名 | 百分比 |
優秀 | 200 | 20% |
良好 | 600 | 60% |
及格 | 150 | 15% |
不及格 | 50 | a |
(1)a的值為__________;
(2)請你從表格中任意選取一列數據,繪制合理的統計圖來表示;(繪制一種即可)
(3)說一說你選擇此統計圖的理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一條不完整的數軸上從左到右有點A,B,C,其中AB=2,BC=1,如圖所示,設點A,B,C所對應數的和是p.
(1)若以B為原點,寫出點A,C所對應的數,并計算p的值;若以C為原點,p又是多少?
(2)若原點O在圖中數軸上點C的右邊,且CO=28,求p.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,O是矩形ABCD的對角線AC的中點,M是AD的中點,若AB=5,AD=12,則四邊形ABOM的周長為( )
A.18B.20C.22D.24
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是直角三角形,延長AB到點E,使BE=BC,在BC上取一點F,使BF=AB,連接EF.△ABC旋轉后能與△FBE重合,請回答:
(1)旋轉中心是點 ,
(2)旋轉了度,
(3)AC與EF的關系為.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com