日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知△ABC為直角三角形,∠C=90°,邊BC是⊙0的切線,切點為D,AB經過圓心O并與圓相交于點E,連接AD.

(1)求證:AD平分∠BAC;
(2)若AC=8,tan∠DAC= ,求⊙O的半徑.

【答案】
(1)證明:連接OD,

∵BC是⊙O的切線,

∴OD⊥BC,
∠ODB=∠C=90°

∴OD∥AC,

∴∠ODA=∠CAD,

∵OA=OD,

∴∠ODA=∠OAD,

∴∠OAD=∠CAD,即AD平分∠BAC


(2)解:連接DE,

∵AE是⊙O的直徑,

∴∠ADE=90°,

∵∠OAD=∠CAD,tan∠DAC=

∴tan∠EAD=

∵tan∠DAC= ,AC=8,

∴CD=6,

由勾股定理得,AD= =10,

=

解得,DE=

∴AE= =

∴⊙O的半徑為


【解析】(1)已知圓的切線,常添加的輔助線是“連半徑,得垂直”。已知BC是⊙0的切線,所以連半徑OD,得到OD⊥BC,再由平行線的性質和等腰三角形的性質就可證得結論;(2)要求此圓的半徑,轉化為求直徑AE的長,已知圓的直徑,常添加的輔助線是“連接一條弦,得直徑所對的圓周角是直角”,方法一:連接DE,得到Rt△ADE,再根據正切的定義和勾股定理可得到圓的半徑,方法二求出AD的長后,也可以證明△ACD△ADE求得AE的長,即可得到此圓的半徑長。
【考點精析】認真審題,首先需要了解平行線的判定與性質(由角的相等或互補(數量關系)的條件,得到兩條直線平行(位置關系)這是平行線的判定;由平行線(位置關系)得到有關角相等或互補(數量關系)的結論是平行線的性質),還要掌握等腰三角形的性質(等腰三角形的兩個底角相等(簡稱:等邊對等角))的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,點MAB的中點,點PMB上.分別以AP,PB為邊,作正方形APCD和正方形PBEF,連結MDME.設AP=a,BP=b,且a+b=10,ab=20.則圖中陰影部分的面積為________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABCD.∠1=2,∠3=4,試說明 ADBE,請你將下面解答過程填寫完整.

解:∵ABCD

∴∠4=

∵∠3=4

∴∠3= (等量代換)

∵∠1=2

∴∠1+CAF=2+CAE 即∠BAE=

∴∠3=

ADBE ).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知 ADBC,垂足為點 DEFBC,垂足為點 F,∠1+2=180° 請填寫∠CGD=CAB 的理由.

解:因為 ADBCEFBC

所以∠ADC=90°,∠EFD=90°

得∠ADC=EFD

所以 AD//EF

得∠2+3=180°

又因為∠1+2=180°(已知)

所以∠1=3

所以 DG//AB

所以∠CGD=CAB

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周長為36 cm,點P從點A開始沿AB邊向B點以每秒1cm的速度移動;點Q從點B沿BC邊向點C以每秒2cm的速度移動,如果同時出發,則過3s時,△BPQ的面積為____cm2.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在四邊形ABCD中,∠DAB被對角線AC平分,且AC2=ABAD,我們稱該四邊形為“可分四邊形”,∠DAB稱為“可分角”.

(1)如圖2,若四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,且∠DCB=∠DAB,則∠DAB=°.

(2)如圖3,在四邊形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求證:四邊形ABCD為“可分四邊形”;

(3)現有四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,且AC=4,BC=2,∠D=90°,求AD的長?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列命題中,真命題是( )

A. 如果三角形三個角的度數比是3:4:5,那么這個三角形是直角三角形

B. 如果直角三角形兩直角邊的長分別為ab,那么斜邊的長為a2+b2

C. 若三角形三邊長的比為1:2:3,則這個三角形是直角三角形

D. 如果直角三角形兩直角邊分別為ab,斜邊為c,那么斜邊上的高h的長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將長方形紙片ABCD折疊,使點D與點B重合,點C落在點C'處,折痕為EF,若∠ABE25°,則∠EFC'的度數為(  )

A.122.5°B.130°C.135°D.140°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,BC=16cm,AC=12cm,點P從點B出發,沿BC以2cm/s的速度向點C移動,點Q從點C出發,以1cm/s的速度向點A移動,若點P、Q分別從點B、C同時出發,設運動時間為t s,當t=時,△CPQ與△CBA相似.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产欧美一区二区在线观看 | 免费日本视频 | 国产精品视频 – 无名网 | www.色综合 | 人善交video另类hd国产片 | 国产一区二区三区久久久 | 日韩欧美三级在线 | 性色av一区二区三区 | 精品国产欧美一区二区三区成人 | 我和我的祖国电影在线观看免费版高清 | 欧美精品一区二区三区四区 | 久久www免费人成看片高清 | 五月婷婷婷婷 | 欧美日韩在线观看中文字幕 | 日韩一二三区 | 精品美女在线 | 国产精品久久精品 | 日韩成人高清 | 国产一区精品在线 | 亚洲欧洲中文日韩 | 91欧美激情一区二区三区成人 | 97综合色 | 国产日产欧美a级毛片 | 99久久久国产精品 | 99精品国产在热久久 | 日韩大片免费观看视频播放 | 欧美高清成人 | av看片网 | 在线看av的网址 | 欧美在线 | 国产福利免费视频 | 久久亚洲天堂 | 蜜臀99久久精品久久久久久软件 | 黄一区 | 91成人免费看片 | 99re在线观看 | av黄色在线 | 99久久婷婷国产综合亚洲 | 国产精品成人久久久久 | 国产视频一区在线 | 亚洲一区视频在线 |