【題目】圖中,點A,B,C,P,Q,R顯示了6名學生平均每周用于閱讀課外書的時間和用于看電視的時間(單位:h)
(1)用有序數對表示圖中點A,B,C,P,Q,R
(2)圖中方格紙的對角線的左上方的點有什么共同的特點?它右下方的點呢?
(3)三角形ABC的圖形經過怎樣的變換后得到三角形PQR的圖形?其中點A對應點P,點B對應點Q,點C對應點R
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AD是⊙O的切線,點C在⊙O上,BC∥OD.
(1)若AB=2,OD=3,求BC的長;
(2)若作直線CD,試說明直線CD是⊙O的切線.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c的圖象如圖所示,下列結論:①b<2a;②a+2c﹣b>0;③b>a>c;④b2+2ac<3ab.其中正確結論的個數是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】現代互聯網技術的廣泛應用,催生了快遞行業的高速發展.阜陽市某家快遞公司,2017年3月份與5月份完成投遞的快遞總件數分別為10萬件和12.1萬件.現假定該公司每月投遞的快遞總件數的增長率相同.
(1)求該快遞公司投遞快遞總件數的月平均增長率?
(2) 如果平均每人每月最多可投遞快遞0.6萬件,那么該公司現有的21名快遞投遞業務員能否完成2017年6月份的快遞投遞任務?如果不能,請問至少需要增加幾名業務員?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場要經營一種新上市的文具,進價為20元,試營銷階段發現:當銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10件.
(1)寫出商場銷售這種工具,每天所得的銷售利潤w(元)與銷售單價x(元)之間的函數關系式;
(2)求銷售單價為多少元時,該文具每天的銷售利潤最大;
(3)商場的營銷部結合上述情況,提出了A、B兩種營銷方案:
方案A:該文具的銷售單價高于進價且不超過30元;
方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元.
請比較哪種方案的最大利潤更高,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形的頂點
、
分別落在
軸、
軸正半軸上,點
在邊
上,點
在邊
上,且
,已知
,
.
(1)求點的坐標;
(2)點關于點
的對稱點為點
,點
從
點出發,以每秒1個單位的速度沿射線
運動,設
點的運動時間為
秒,
的面積為
,用含
的代數式表示
;
(3)在(2)的條件下,點為平面內一點,點
在線段
上運動時,作
的平分線交
軸于點
,
為何值時,四邊形
為矩形?并求此時點
的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為5,點A的坐標為(﹣4,0),點B在y軸上,若反比例函數y=(k≠0)的圖象過點C,則該反比例函數的表達式為_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,AB邊上的高CD=4,點P從點A出發,沿AB以每秒3個單位長度的速度向終點B運動,當點P不與點A、B重合時,過點P作PQ⊥AB,交邊AC或邊BC于點Q,以PQ為邊向右側作正方形PQMN.設正方形PQMN與△ABC重疊部分圖形的面積為S(平方單位),點P運動的時間為t(秒).
(1)直接寫出tanB的值為 .
(2)求點M落在邊BC上時t的值.
(3)當正方形PQMN與△ABC重疊部分為四邊形時,求S與t之間的函數關系式.
(4)邊BC將正方形PQMN的面積分為1:3兩部分時,直接寫出t的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com