日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
如圖,在△ABC中,∠A=90°,AB=2cm,AC=4cm.動點P從點A出發,沿AB方向以1cm/s的速度向點B運動,動點Q從點B同時出發,沿BA方向以1cm/s的速度向點A運動.當點P到達點B時,P,Q兩點同時停止運動,以AP為一邊向上作正方形APDE,過點Q作QF∥BC,交AC于點F.設點P的運動時間為ts,正方形和梯形重合部分的面積為Scm2
(1)當t= _________ s時,點P與點Q重合;
(2)當t= _________ s時,點D在QF上;
(3)當點P在Q,B兩點之間(不包括Q,B兩點)時,求S與t之間的函數關系式.
(1)1    (2)     (3)

試題分析:(1)當點P與點Q重合時,AP=BQ=t,且AP+BQ=AB=2,
∴t+t=2,解得t=1s,
故填空答案:1.
(2)當點D在QF上時,如答圖1所示,此時AP=BQ=t.
∵QF∥BC,APDE為正方形,∴△PQD∽△ABC,
∴DP:PQ=AC:AB=2,則PQ=DP=AP=t.
由AP+PQ+BQ=AB=2,得t+t+t=2,解得:t=
故填空答案:
(3)當P、Q重合時,由(1)知,此時t=1;
當D點在BC上時,如答圖2所示,此時AP=BQ=t,BP=t,求得t=s,進一步分析可知此時點E與點F重合;
當點P到達B點時,此時t=2.
因此當P點在Q,B兩點之間(不包括Q,B兩點)時,其運動過程可分析如下:
①當1<t≤時,如答圖3所示,此時重合部分為梯形PDGQ.
此時AP=BQ=t,∴AQ=2﹣t,PQ=AP﹣AQ=2t﹣2;
易知△ABC∽△AQF,可得AF=2AQ,EF=2EG.
∴EF=AF﹣AE=2(2﹣t)﹣t=4﹣3t,EG=EF=2﹣t,
∴DG=DE﹣EG=t﹣(2﹣t)=t﹣2.
S=S梯形PDGQ=(PQ+DG)•PD=[(2t﹣2)+(t﹣2)]•t=t2﹣2t;
②當<t<2時,如答圖4所示,此時重合部分為一個多邊形.
此時AP=BQ=t,∴AQ=PB=2﹣t,
易知△ABC∽△AQF∽△PBM∽△DNM,可得AF=2AQ,PM=2PB,DM=2DN,
∴AF=4﹣2t,PM=4﹣2t.
又DM=DP﹣PM=t﹣(4﹣2t)=3t﹣4,∴DN=(3t﹣4).
S=S正方形APDE﹣SAQF﹣SDMN=AP2AQ•AF﹣DN•DM
=t2(2﹣t)(4﹣2t)﹣×(3t﹣4)×(3t﹣4)
=﹣t2+10t﹣8.
綜上所述,當點P在Q,B兩點之間(不包括Q,B兩點)時,S與t之間的函數關系式為:
S=


點評:本題是運動型綜合題,涉及到動點與動線問題.第(1)(2)問均涉及動點問題,列方程即可求出t的值;第(3)問涉及動線問題,是本題難點所在,首先要正確分析動線運動過程,然后再正確計算其對應的面積S.本題難度較大,需要同學們具備良好的空間想象能力和較強的邏輯推理能力.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

兩個全等的直角三角形重疊放在直線l上,如圖(1),AB=6cm,BC=8cm,∠ABC=90°,將Rt△ABC在直線l上左右平移,如圖(2)所示.
(1)求證:四邊形ACFD是平行四邊形;
(2)怎樣移動Rt△ABC,使得四邊形ACFD為菱形;
(3)將Rt△ABC向左平移4cm,求四邊形DHCF的面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在正方形ABCD中,E是BC上的一點,連接AE,作BF⊥AE,垂足為H,交CD于F,作CG∥AE,交BF于G.求證:
(1)CG=BH;
(2)FC2=BF•GF;
(3)=

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如果 ,則k的值為______。
A.B.C.1D.-1

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖分別在的邊上,要使△AED∽△ABC,應添加條件是            ;(只寫出一種即可).

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

正方形ABCD中,E為AD上的一點(不與A、D點重合),AD=nAE,BE的垂直平分線分別交AB、CD于F、G兩點,垂足為H.
(1)如圖1,當n=2時,則= _________ 
(2)如圖1,當n=2時,求的值;
(3)延長FG交BC的延長線于M(如圖2),直接填空:當n= _________ 時,

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

在△ABC中,AB=4,如圖(1)所示,DE∥BC,DE把ABC分成面積相等的兩部分,即S=S,求AD的長.
如圖(2)所示,DE∥FG∥BC,DE、FG把△ABC分成面積相等的三部分,即S=S=S,求AD的長;
如圖(3)所示,DE∥FG∥HK∥…∥BC,DE、FG、HK、…把△ABC分成面積相等的n部分,S=S=S=…,請直接寫出AD的長.
 

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,小明作出了邊長為1的第1個正△A1B1C1,算出了正△A1B1C1的面積.然后分別取△A1B1C1三邊的中點A2、B2、C2,作出了第2個正△A2B2C2,算出了正△A2B2C2的面積.用同樣的方法,作出了第3個正△A3B3C3,算出了正△A3B3C3的面積…,由此可得,第10個正△A10B10C10的面積是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,在△ABC中,D、E分別是AB、AC上的點,DE∥BC,且AD=AB,則△ADE的周長與△ABC的周長的比為          

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲精品一二三区 | 成人二区 | 日韩午夜在线视频 | 久久色网站 | 3bmm在线观看视频免费 | 成人免费在线视频观看 | 久久蜜桃av | 亚洲欧美日韩另类精品一区二区三区 | 人人精品 | 日韩一区二区福利 | 精品欧美乱码久久久久久 | 黄色日本视频 | 国产精品视频一区二区三区不卡 | 亚洲精品在线视频 | 亚洲六月丁香色婷婷综合久久 | 日本中文字幕在线观看 | 伊人精品视频 | 亚洲一区二区三区四区五区中文 | 亚洲人免费视频 | 国产成人精品一区 | 亚洲高清av | 一区二区中文 | 一级高清视频 | 国产成人精品一区二区三区四区 | 国产精品99一区二区三区 | 精品国产一区二区三区久久 | 免费的一级黄色片 | 成人在线不卡 | 欧美性一区二区 | 久久亚洲91| 成人在线播放 | 第一福利丝瓜av导航 | 欧美日本韩国一区二区 | 国产中文字幕一区 | 国产精品成人av | 亚洲久久| 欧美精品99 | 色婷婷亚洲国产女人的天堂 | 色婷婷综合久久久久中文一区二 | 国产精品成人在线观看 | 亚洲 国产 另类 精品 专区 |