日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
已知:t1,t2是方程t2+2t-24=0的兩個實數根,且t1<t2,拋物線y=x2+bx+c的圖象經過點A(t1,0),B(0,t2).
(1)求這個拋物線的解析式;
(2)設點P(x,y)是拋物線上一動點,且位于第三象限,四邊形OPAQ是以OA為對角線的平行四邊形,求平行四邊形OPAQ的面積S與x之間的函數關系式,并寫出自變量x的取值范圍;
(3)在(2)的條件下,當平行四邊形OPAQ的面積為24時,是否存在這樣的點P,使?OPAQ為正方形?若存在,求出P點坐標;若不存在,說明理由.

【答案】分析:(1)解方程t2+2t+24=0,可得A(-6,0),B(0,4),再利用待定系數法求二次函數的解析式;
(2)設點P(x,y),利用x,y表示四邊形的邊長求得面積S=-4(x+2+25,利用面積是正數的性質求出x的取值范圍是-6<x<-1;
(3)把S=24代入解析式S=-4(x+2+25中求得y的值,從而得到點P的坐標,根據實際意義進行值的取舍,討論可知不存在這樣的點P,使四邊形OPAQ為正方形.
解答:解:
(1)t2+2t-24=0,(t+6)(t-4)=0,t1=-6,t2=4(1分)
∵t1<t2
∴A(-6,0),B(0,4)(2分)
∵拋物線y=x2+bx+c經過A,B兩點.

解得
∴y=x2+x+4.(4分)

(2)∵點P(x,y)在拋物線上,位于第三象限,
∴y<0,即-y>0.
又∵S=2S△APO=2××|OA|•|y|=|OA|•|y|=6|y|,
∴S=-6y(6分)
=-6(x2+x+4)
=-4(x2+7x+6)
=-4(x+2+25(7分)
令y=0時,x2+x+4=0,
解得x1=-6,x2=-1.
∵拋物線與x軸的交點坐標為(-6,0),(-1,0),
∴x的取值范圍為-6<x<-1.(8分)

(3)當S=24時,得24=-4(x+2+25,
解得:x1=-3,x2=-4(9分)
代入解析式得:y1=-4,y2=-4.
∴點P的坐標為(-3,-4),(-4,-4)
當點P為(-3,-4)時,滿足PO=PA,此時,平行四邊形OPAQ是菱形.
當點P為(-4,-4)時,不滿足PO=PA,此時,平行四邊形OPAQ不是菱形.(10分)
而要使平行四邊形OPAQ為正方形,那么,一定有OA⊥PQ,AO=PQ,
此時,點P的坐標為(-3,-3),而(-3,-3)不在拋物線y=x2+x+4上,
故不存在這樣的點P,使四邊形OPAQ為正方形.(12分)
點評:主要考查了二次函數的解析式的求法和與幾何圖形結合的綜合能力的培養.
要會利用數形結合的思想把代數和幾何圖形結合起來,利用點的坐標的意義表示線段的長度,從而求出線段之間的關系.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知:t1,t2是方程t2+2t-24=0的兩個實數根,且t1<t2,拋物線y=
23
x2+bx+c的圖精英家教網象經過點A(t1,0),B(0,t2).
(1)求這個拋物線的解析式;
(2)設點P(x,y)是拋物線上一動點,且位于第三象限,四邊形OPAQ是以OA為對角線的平行四邊形,求平行四邊形OPAQ的面積S與x之間的函數關系式,并寫出自變量x的取值范圍;
(3)在(2)的條件下,當平行四邊形OPAQ的面積為24時,是否存在這樣的點P,使?OPAQ為正方形?若存在,求出P點坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源:第2章《二次函數》中考題集(37):2.8 二次函數的應用(解析版) 題型:解答題

已知:t1,t2是方程t2+2t-24=0的兩個實數根,且t1<t2,拋物線y=x2+bx+c的圖象經過點A(t1,0),B(0,t2).
(1)求這個拋物線的解析式;
(2)設點P(x,y)是拋物線上一動點,且位于第三象限,四邊形OPAQ是以OA為對角線的平行四邊形,求平行四邊形OPAQ的面積S與x之間的函數關系式,并寫出自變量x的取值范圍;
(3)在(2)的條件下,當平行四邊形OPAQ的面積為24時,是否存在這樣的點P,使?OPAQ為正方形?若存在,求出P點坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源:2009年全國中考數學試題匯編《二次函數》(09)(解析版) 題型:解答題

(2009•鄂爾多斯)已知:t1,t2是方程t2+2t-24=0的兩個實數根,且t1<t2,拋物線y=x2+bx+c的圖象經過點A(t1,0),B(0,t2).
(1)求這個拋物線的解析式;
(2)設點P(x,y)是拋物線上一動點,且位于第三象限,四邊形OPAQ是以OA為對角線的平行四邊形,求平行四邊形OPAQ的面積S與x之間的函數關系式,并寫出自變量x的取值范圍;
(3)在(2)的條件下,當平行四邊形OPAQ的面積為24時,是否存在這樣的點P,使?OPAQ為正方形?若存在,求出P點坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源:2009年全國中考數學試題匯編《一元二次方程》(05)(解析版) 題型:解答題

(2009•鄂爾多斯)已知:t1,t2是方程t2+2t-24=0的兩個實數根,且t1<t2,拋物線y=x2+bx+c的圖象經過點A(t1,0),B(0,t2).
(1)求這個拋物線的解析式;
(2)設點P(x,y)是拋物線上一動點,且位于第三象限,四邊形OPAQ是以OA為對角線的平行四邊形,求平行四邊形OPAQ的面積S與x之間的函數關系式,并寫出自變量x的取值范圍;
(3)在(2)的條件下,當平行四邊形OPAQ的面積為24時,是否存在這樣的點P,使?OPAQ為正方形?若存在,求出P點坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 黄色大片网站在线观看 | 久久亚洲免费 | 国产在线国偷精品产拍免费观看 | 波多野结衣 一区二区 | 久久久久久免费毛片精品 | 2019中文字幕在线观看 | 免费av一区 | 精品久久久一区二区 | 五月婷婷激情 | 美日韩在线 | 国产 在线 | 日韩 | 亚洲天堂免费在线视频 | 日韩精品一区二区在线观看 | 亚洲在线视频 | 一区在线免费观看 | 99久久久久国产精品免费 | 久久一区 | 日韩精品专区在线影院重磅 | 人操人人| 黄色免费网站 | 久久久久久久99精品免费观看 | 国产又粗又长又硬又猛电影 | 日本视频一区二区三区 | 日本黄a | 成人欧美一区二区三区白人 | 国产视频久久精品 | 久久精品99国产精品日本 | 久久不卡日韩美女 | 亚洲午夜精品久久久久久app | 一区二区不卡视频在线观看 | 亚洲国产高清在线 | 男女靠逼免费视频 | 黄色片视频免费 | 在线观看免费av网 | 国产成人一区二区三区影院在线 | 成人亚洲视频 | 奇米在线视频 | 国产乱人伦av在线a 日韩电影中文字幕 | 久久天堂| 欧美精品亚洲 | 日韩欧美精品在线观看 |