【題目】行駛中的汽車,在剎車后由于慣性的作用,還要向前方滑行一段距離才能停止,這段距離稱為“剎車距離”,為了測定某種型號的汽車的剎車性能(車速不超過140 km/h),對這種汽車進行測試,測得數據如下表:
剎車時車速/km·h-1 | 0 | 10 | 20 | 30 | 40 | 50 | 60 |
剎車距離/m | 0 | 0.3 | 1.0 | 2.1 | 3.6 | 5.5 | 7.8 |
(1)以車速為x軸,以剎車距離為y軸,建立平面直角坐標系,根據上表對應值作出函數的大致圖象;
(2)觀察圖象.估計函數的類型,并確定一個滿足這些數據的函數解析式;
(3)該型號汽車在國道發生了一次交通事故,現場測得剎車距離為46.5 m,推測剎車時的車速是多少?請問事故發生時,汽車是超速行駛還是正常行駛?
科目:初中數學 來源: 題型:
【題目】綜合與探究:
如圖在等邊三角形ABC中,線段AM為BC邊上的中線,動點D在直線AM上時,以CD為一邊在CD的下方作等邊三角形CDE,連接BE.
(1)填空:∠CAM= ;
(2)若點D在線段AM上時,求證:△ADC≌△BEC;
(3)當動點D在直線AM上時,設直線BE與直線AM的交點為O,
①當點D在線段AM上時,求∠AOB的度數;
②當動點D在直線AM上時,試判斷∠AOB是否為定值?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在第1個△A1BC中,∠B=20°,A1B=CB;在邊A1B上任取一點D,延長CA1到A2,使A1A2=A1D,得到第2個△A1A2D;在邊A2D上任取一點E,延長A1A2到A3,使A2A3=A2E,得到第3個△A2A3E,按此做法繼續下去,第2019個等腰三角形的底角度數是______________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】△ABC 是等邊三角形,點 P 在△ABC 內,PA=2,將△PAB 繞點 A 逆時針旋轉得到△P1AC,則 P1P 的長等于( )
A. 2 B. C.
D. 1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰三角形ABC底邊BC的長為4,面積為12,腰AB的垂直平分線EF交AB于點E,交AC于點F.若D為BC邊的中點,M為線段EF上一個動點,則△BDM的周長的最小值為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數y=﹣x2+bx+c(c>0)的圖象與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C,且OB=OC=3,頂點為M.
(1)求二次函數的解析式;
(2)點P為線段BM上的一個動點,過點P作x軸的垂線PQ,垂足為Q,若OQ=m,四邊形ACPQ的面積為S,求S關于m的函數解析式,并寫出m的取值范圍;
(3)探索:線段BM上是否存在點N,使△NMC為等腰三角形?如果存在,求出點N的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】夏季空調銷售供不應求,某空調廠接到一份緊急訂單,要求在10天內(含10天)完成任務,為提高生產效率,工廠加班加點,接到任務的第一天就生產了空調42臺,以后每天生產的空調都比前一天多2臺,由于機器損耗等原因,當日生產的空調數量達到50臺后,每多生產一臺,當天生產的所有空調,平均每臺成本就增加20元.
(1)設第天生產空調
臺,直接寫出
與
之間的函數解析式,并寫出自變量
的取值范圍.
(2)若每臺空調的成本價(日生產量不超過50臺時)為2000元,訂購價格為每臺2920元,設第天的利潤為
元,試求
與
之間的函數解析式,并求工廠哪一天獲得的利潤最大,最大利潤是多少.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在△ABC中,∠BAC=90°,AB=AC.MN是過點A的直線,BD⊥MN 于D,CE⊥MN于E.
(1)求證:BD=AE.
(2)若將MN繞點A旋轉,使MN與BC相交于點G(如圖2),其他條件不變,求證:BD=AE.
(3)在(2)的情況下,若CE的延長線過AB的中點F(如圖3),連接GF,求證:∠AFE=∠BFG.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com