已知三角形兩邊的長分別是3和6,第三邊的長是方程x2-6x+8=0的根,則這個三角形的周長等于( )
A.13
B.11
C.11 或13
D.12或15
【答案】分析:首先從方程x2-6x+8=0中,確定第三邊的邊長為2或4;其次考查2,3,6或4,3,6能否構成三角形,從而求出三角形的周長.
解答:解:由方程x2-6x+8=0,得:
解得x1=2或x2=4,
當第三邊是2時,2+3<6,不能構成三角形,應舍去;
當第三邊是4時,三角形的周長為4+3+6=13.
故選A.
點評:考查了三角形三邊關系,求三角形的周長,不能盲目地將三邊長相加起來,而應養(yǎng)成檢驗三邊長能否成三角形的好習慣,不符合題意的應棄之.