日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
如圖(1),分別以兩個彼此相鄰的正方形OABC與CDEF的邊OC、OA所在直線為x軸、y軸建立平面直角坐標系(O、C、F三點在x軸正半軸上).若⊙P過A、B、E三點(圓心在x軸上)交y軸于另一點Q,拋物線經過A、C兩點,與x軸的另一交點為G,M是FG的中點,B點坐標為(2,2).
(1)求拋物線的函數解析式和點E的坐標;
(2)求證:ME是⊙P的切線;
(3)如圖(2),點R從正方形CDEF的頂點E出發以1個單位/秒的速度向點F運動,同時點S從點Q出發沿y軸以5個單位/秒的速度向上運動,連接RS,設運動時間為t秒(0<t<1),在運動過程中,正方形CDEF在直線RS下方部分的面積是否變化?若不變,說明理由并求出其值;若變化,請說明理由;

【答案】分析:(1)根據點B的坐標以及正方形的性質求出點A、C的坐標,然后利用待定系數法求二次函數解析式解答;根據垂徑定理可得圓心P為AB的垂直平分線與x軸的交點,連接PE、PA,根據勾股定理表示出PA2,設正方形CDEF的邊長為a,表示出PF,然后在Rt△PEF中,利用勾股定理列式進行計算即可求出a的值,然后求出OF,即可得到點E的坐標;
(2)令y=0,利用拋物線解析式求出點G的坐標,然后得到點M的坐標,再求出FM、PM,然后利用勾股定理逆定理判定PE⊥EM,再根據切線的定義得證;
(3)表示出點S、R的坐標,然后利用待定系數法求一次函數解析式求出直線SR的解析式,再求出SR與CD的交點坐標,然后根據梯形的面積公式列式進行計算即可求出正方形CDEF在直線RS下方部分的面積為定值.
解答:(1)解:B點坐標為(2,2),四邊形OABC是正方形,
∴點A(0,2),C(2,0),
∵拋物線y=x2+bx+c經過點A、C,

解得
∴拋物線解析式為y=x2-x+2;
根據垂徑定理,AB的垂直平分線與x軸的交點為圓心P,即P(1,0),
如圖,連接PE、PA,則PE2=PA2=OA2+OP2=22+12=5,
設正方形CDEF的邊長為a,
則PF=a+1,
在Rt△PEF中,PE2=PF2+EF2
即5=(a+1)2+a2
整理得,a2+a-2=0,
解得a1=1,a2=-2(舍去),
∴OF=OC+CF=2+1=3,
∴點E的坐標為(3,1);

(2)證明:令y=0,則x2-x+2=0,
整理得,x2-6x+8=0,
解得x1=2,x2=4,
∴點G的坐標為(4,0),
∴點M是FG的中點,
∴點M(3.5,0),
∴FM=3.5-3=0.5,
PM=3.5-1=2.5,
在Rt△EFM中,EM2=EF2+FM2=12+0.52=
∴PE2+EM2=5+=
∵PM2=2.52=
∴PE2+EM2=PM2
∴△PEM是直角三角形,且PE⊥EM,
∴ME是⊙P的切線;

(3)解:不變,面積為
理由如下:∵圓心P在x軸上,點A的坐標為(0,2),
∴點Q的坐標為(0,-2),
∵點R的速度為1個單位/秒,點S的速度為5個單位/秒,
∴點R(3,1-t),S(0,5t-2),
設直線RS的解析式為y=mx+n,

解得
所以,直線RS的解析式為y=(-2t+1)x+5t-2,
當x=2時,y=(-2t+1)×2+5t-2=-4t+2+5t-2=t,
又∵RF=1-t,
∴正方形CDEF在直線RS下方部分的面積=[t+(1-t)]×1=,與t無關,是定值,
即正方形CDEF在直線RS下方部分的面積不變,為
點評:本題是二次函數綜合題型,主要考查了正方形的性質,待定系數法求函數解析(包括二次函數解析式,一次函數解析式),勾股定理的應用,圓的切線的判定,(3)的求解較為巧妙,利用直線RS的解析式確定與CD的交點是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•鹽城模擬)如圖(1),分別以兩個彼此相鄰的正方形OABC與CDEF的邊OC、OA所在直線為x軸、y軸建立平面直角坐標系(O、C、F三點在x軸正半軸上).若⊙P過A、B、E三點(圓心在x軸上)交y軸于另一點Q,拋物線y=
14
x2+bx+c
經過A、C兩點,與x軸的另一交點為G,M是FG的中點,B點坐標為(2,2).
(1)求拋物線的函數解析式和點E的坐標;
(2)求證:ME是⊙P的切線;
(3)如圖(2),點R從正方形CDEF的頂點E出發以1個單位/秒的速度向點F運動,同時點S從點Q出發沿y軸以5個單位/秒的速度向上運動,連接RS,設運動時間為t秒(0<t<1),在運動過程中,正方形CDEF在直線RS下方部分的面積是否變化?若不變,說明理由并求出其值;若變化,請說明理由;

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖(1),分別以兩個彼此相鄰的正方形OABC與CDEF的邊OC、OA所在直線為x軸、y軸建立平面直角坐標系(O、C、F三點在x軸正半軸上).若⊙P過A、B、E三點(圓心在x軸上)交y軸于另一點Q,拋物線數學公式經過A、C兩點,與x軸的另一交點為G,M是FG的中點,B點坐標為(2,2).
(1)求拋物線的函數解析式和點E的坐標;
(2)求證:ME是⊙P的切線;
(3)如圖(2),點R從正方形CDEF的頂點E出發以1個單位/秒的速度向點F運動,同時點S從點Q出發沿y軸以5個單位/秒的速度向上運動,連接RS,設運動時間為t秒(0<t<1),在運動過程中,正方形CDEF在直線RS下方部分的面積是否變化?若不變,說明理由并求出其值;若變化,請說明理由;

查看答案和解析>>

科目:初中數學 來源:2013年江蘇省鹽城市中考數學模擬試卷(5月份)(解析版) 題型:解答題

如圖(1),分別以兩個彼此相鄰的正方形OABC與CDEF的邊OC、OA所在直線為x軸、y軸建立平面直角坐標系(O、C、F三點在x軸正半軸上).若⊙P過A、B、E三點(圓心在x軸上)交y軸于另一點Q,拋物線經過A、C兩點,與x軸的另一交點為G,M是FG的中點,B點坐標為(2,2).
(1)求拋物線的函數解析式和點E的坐標;
(2)求證:ME是⊙P的切線;
(3)如圖(2),點R從正方形CDEF的頂點E出發以1個單位/秒的速度向點F運動,同時點S從點Q出發沿y軸以5個單位/秒的速度向上運動,連接RS,設運動時間為t秒(0<t<1),在運動過程中,正方形CDEF在直線RS下方部分的面積是否變化?若不變,說明理由并求出其值;若變化,請說明理由;

查看答案和解析>>

科目:初中數學 來源:2012年江蘇省泰州市泰興市實驗中學中考數學二模試卷(解析版) 題型:解答題

如圖(1),分別以兩個彼此相鄰的正方形OABC與CDEF的邊OC、OA所在直線為x軸、y軸建立平面直角坐標系(O、C、F三點在x軸正半軸上).若⊙P過A、B、E三點(圓心在x軸上)交y軸于另一點Q,拋物線經過A、C兩點,與x軸的另一交點為G,M是FG的中點,B點坐標為(2,2).
(1)求拋物線的函數解析式和點E的坐標;
(2)求證:ME是⊙P的切線;
(3)如圖(2),點R從正方形CDEF的頂點E出發以1個單位/秒的速度向點F運動,同時點S從點Q出發沿y軸以5個單位/秒的速度向上運動,連接RS,設運動時間為t秒(0<t<1),在運動過程中,正方形CDEF在直線RS下方部分的面積是否變化?若不變,說明理由并求出其值;若變化,請說明理由;

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 看黄网址 | 99久久久久久久久 | 国产专区在线播放 | 国产精彩视频 | 日韩美女一区二区三区 | 国产日日干| 夜夜骚 | 日韩1区 | 欧美一区二区三区精品免费 | 精品国产aⅴ一区二区 | 国产精品一区二区四区 | 日日操操| 91视频免费污 | 97香蕉久久国产超碰青草软件 | 日韩精品一区二 | 在线看片福利 | 中文字幕精品一区二区三区精品 | 国产精品美女久久久久久不卡 | 亚洲免费影院 | 欧美婷婷 | 国精品一区 | 国产免费网址 | 久久国产成人午夜av影院宅 | 日韩综合网 | 午夜羞羞| 久久综合一区二区 | 精品一级毛片 | 欧美成人精品一区二区男人看 | 国一级片 | 男人的天堂亚洲 | 日韩毛片网 | 久久久久久久99精品免费观看 | 中文字幕一区二区三区四区五区 | 国产精品禁久久精品 | 国产精品91视频 | 国产精品无码专区在线观看 | 久草天堂 | 欧美一区二区成人 | 狠狠色狠狠色合久久伊人 | 高清视频一区二区 | 国产精品不卡视频 |