已知直線l與⊙O,AB是⊙O的直徑,AD⊥l于點(diǎn)D.
(1)如圖①,當(dāng)直線l與⊙O相切于點(diǎn)C時(shí),若∠DAC=30°,求∠BAC的大;
(2)如圖②,當(dāng)直線l與⊙O相交于點(diǎn)E、F時(shí),若∠DAE=18°,求∠BAF的大。
解:(1)如圖①,連接OC,
∵直線l與⊙O相切于點(diǎn)C,∴OC⊥l。
∵AD⊥l,∴OC∥AD。
∴∠OCA=∠DAC。
∵OA=OC,∴∠BAC=∠OCA。
∴∠BAC=∠DAC=30°。
(2)如圖②,連接BF,
∵AB是⊙O的直徑,∴∠AFB=90°。
∴∠BAF=90°-∠B。
∴∠AEF=∠ADE+∠DAE=90°+18°=108°。
在⊙O中,四邊形ABFE是圓的內(nèi)接四邊形,
∴∠AEF+∠B=180°!唷螧=180°-108°=72°。
∴∠BAF=90°-∠B=180°-72°=18°。
【解析】
試題分析:(1)如圖①,首先連接OC,根據(jù)當(dāng)直線l與⊙O相切于點(diǎn)C,AD⊥l于點(diǎn)D.易證得OC∥AD,繼而可求得∠BAC=∠DAC=30°。
(2)如圖②,連接BF,由AB是⊙O的直徑,根據(jù)直徑所對(duì)的圓周角是直角,可得∠AFB=90°,由三角形外角的性質(zhì),可求得∠AEF的度數(shù),又由圓的內(nèi)接四邊形的性質(zhì),求得∠B的度數(shù),繼而求得答案。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
3 |
7 |
3 |
7 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com