日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
(2014•金山區一模)如圖1,Rt△ABC中,∠ACB=90°,AC=4,BC=3,P是斜邊AB上的一個動點(點P與點A、B不重合),以點P為圓心,PA為半徑的⊙P與射線AC的另一個交點為D,射線PD交射線BC于點E.
(1)如圖2,若點E在線段BC的延長線上,設AP=x,CE=y,
①求y關于x的函數關系式,并寫出x的取值范圍;
②當以BE為直徑的圓和⊙P外切時,求AP的長;
(2)設線段BE的中點為Q,射線PQ與⊙P相交于點I,若CI=AP,求AP的長.
分析:(1)①由AP=DP得到∠PAD=∠PDA,由對頂角相等得∠PDA=∠CDE,則∠PAD=∠CDE,根據三角形相似的判定方法得到△ABC∽△DEC,則∠ABC=∠DEC,
BC
CE
=
DE
AB
,且得到PB=PE.在Rt△ABC中根據勾股定理計算出AB=5,則PB=PE=5-x,DE=5-2x,然后利用相似比即可得到y關于x的函數關系式;
②設BE的中點為Q,連結PQ,由于PB=PE,根據等腰三角形的性質得PQ⊥BE,易得PQ∥AC,則△BPQ∽△BAC,利用相似比得到PQ=-
4
5
x+4(圓心距),BQ=-
3
5
x+3(⊙Q的半徑),根據兩圓外切的性質得到-
4
5
x+4=x+(-
3
5
x+3),然后解方程即可;
(2)分類討論:當點E在線段BC延長線上時,利用(1)②的結論可得IQ=PQ-PI=-
9
5
x+4,CQ=BC-BQ=
3
5
x,在Rt△CQI中,根據勾股定理得CI2=CQ2+IQ2=(
3
5
x)2+(-
9
5
x+4)2=
18
5
x2-
72
5
x+16,再由CI=AP得到
18
5
x2-
72
5
x+16=x2,解得x1=
20
13
,x2=4,由于0<x<
5
2
,由此得到AP的長為
20
13
;
同理當點E在線段BC上時,IQ=PI-PQ=
9
5
x-4,CQ=BC-BQ=
3
5
x,在Rt△CQI中,CI2=CQ2+IQ2=
18
5
x2-
72
5
x+16,利用CI=AP得到
18
5
x2-
72
5
x+16=x2,解得x1=
20
13
,x2=4,由于
5
2
<x<5,則AP的長為4,由此得到AP的長為
20
13
或4.
解答:解:(1)①∵AP=DP,
∴∠PAD=∠PDA,
∵∠PDA=∠CDE,
∴∠PAD=∠CDE,
∵∠ACB=∠DCE=90°,
∴△ABC∽△DEC,
∴∠ABC=∠DEC,
BC
CE
=
DE
AB

∴PB=PE.
在Rt△ABC中,∠ABC=90°,AC=4,BC=3,
∴AB=
AC2+BC2
=5,
∴PB=PE=5-x,DE=5-2x,
3
y
=
5
5-2x
,
∴y=-
6
5
x+3(0<x<
5
2
);
②設BE的中點為Q,連結PQ,如圖,
∵PB=PE,
∴PQ⊥BE,
又∵∠ABC=90°,
∴PQ∥AC,
∴△BPQ∽△BAC,
PQ
AC
=
PB
AB
=
BQ
BC
,即
PQ
4
=
5-x
5
=
BQ
3
,
∴PQ=-
4
5
x+4,BQ=-
3
5
x+3,
當以BE為直徑的圓和⊙P外切時,-
4
5
x+4=x+(-
3
5
x+3),解得x=
5
6
,即AP的長為
5
6
;
(2)當點E在線段BC延長線上時,
由(1)②的結論可得IQ=PQ-PI=-
4
5
x+4-x=-
9
5
x+4,
CQ=BC-BQ=3-(-
3
5
x+3)=
3
5
x,
在Rt△CQI中,CI2=CQ2+IQ2=(
3
5
x)2+(-
9
5
x+4)2=
18
5
x2-
72
5
x+16,
∵CI=AP,
18
5
x2-
72
5
x+16=x2
解得x1=
20
13
,x2=4(不合題意,舍去),
∴AP的長為
20
13
;
當點E在線段BC上時,IQ=PI-PQ=x-(-
4
5
x+4)=
9
5
x-4,
CQ=BC-BQ=3-(-
3
5
x+3)=
3
5
x,
在Rt△CQI中,CI2=CQ2+IQ2=(
3
5
x)2+(
9
5
x-4)2=
18
5
x2-
72
5
x+16,
∵CI=AP,
18
5
x2-
72
5
x+16=x2,
解得x1=
20
13
(舍去),x2=4,
∴AP的長為4,
綜上所述,AP的長為
20
13
或4.
點評:本題考查了圓的綜合題:熟練掌握兩圓相切的性質和三角形相似的判定與性質;會運用勾股定理和相似比進行幾何計算;能運用分類討論的思想解決問題.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2014•金山區一模)已知在△ABC中,點D、E分別在邊AB、AC上,DE∥BC,
AD
AB
=
3
5
,那么
AE
CE
的值等于
3
2
3
2

查看答案和解析>>

科目:初中數學 來源: 題型:

(2014•金山區一模)兩個相似三角形的面積比為1:4,那么這兩個三角形的周長比為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2014•金山區一模)如果向量
a
與單位向量
e
方向相反,且長度為
1
2
,那么向量
a
用單位向量
e
表示為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2014•金山區一模)將拋物線y=x2向右平移1個單位,所得新拋物線的函數解析式是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2014•金山區一模)在Rt△ABC中,∠A=90°,如果把這個直角三角形的各邊長都擴大2倍,那么所得到的直角三角形中,∠B的正切值( 。

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 毛片在线视频 | 国产精品欧美一区乱破 | 日韩视频在线不卡 | 亚洲欧洲日本国产 | 爽爽淫人网 | 羞羞色影院 | 男女视频免费 | 精品影院 | 精品国产乱码久久久久久影片 | 三级网址日本 | 91久久久久久久久 | 三级毛片在线 | 中文字幕免费在线观看 | avmans最新导航地址 | 欧美激情一区二区三区蜜桃视频 | 免费观看一区二区三区毛片 | 中文字幕一区在线观看视频 | 极黄视频| 欧美日韩国产一区二区三区 | 一级女性全黄久久生活片免费 | 91精品久久久久久久久 | 欧美一级二级视频 | 亚洲一区久久 | 亚洲色图网站 | 欧美精品久久久久 | 国产精品美女www爽爽爽软件 | 亚洲不卡在线观看 | 99精品国产在热久久 | 一区在线不卡 | 国产一区二区精品 | 国产精品久久久久蜜臀 | 久久之精品| www.日韩视频 | 亚洲成人aaa | 99动漫| 亚洲精品免费观看 | 久久精品视频在线观看 | 青青青久草 | 国产日韩在线播放 | 欧美在线观看在线观看 | 国产乱人伦av在线a 久久精品视 |