【題目】二次函數的圖象如圖,點
位于坐標原點,點
在
軸的正半軸上,點
在二次函數位于第一象限的圖象上,點
在二次函數位于第二象限的圖象上,四邊形
,四邊形
,四邊形
…四邊形
都是正方形,則正方形
的周長為__________.
【答案】
【解析】
因為四邊形A0B1A1C1是正方形,所以A0B1=A1B1,又因為∠A0B1A1=90°。所以△A0B1A1是等腰直角三角形,可知點B1的坐標為(1,1),則A0B1 =,所以四邊形A0B1A1C1周長為
,同理可得四邊形A1B2A2C2的周長為8
,所以四邊形An-1BnAnCn的周長為
.
因為四邊形A0B1A1C1是正方形,所以A0B1=A1B1,又因為∠A0B1A1=90°。所以△A0B1A1是等腰直角三角形,可知點B1的坐標為(1,1),則A0B1 =,所以四邊形A0B1A1C1周長為
,同理可得四邊形A1B2A2C2的周長為8
…同理可得四邊形An-1BnAnCn的周長為
.
科目:初中數學 來源: 題型:
【題目】已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,點F為BE中點,連結DF,CF.
(1)如圖1,點D在AC上,請你判斷此時線段DF,CF的關系,并證明你的判斷;
(2)如圖2,在(1)的條件下將△ADE繞點A順時針旋轉45度時,若AD=DE=2,AB=6,求此時線段CF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,拋物線y=ax2+8ax(a>0)與x軸交于O,A兩點,頂點為M,對稱軸與x軸交于H,與過O,A,M三點的⊙Q交于點B,⊙Q的半徑為5,點C從點B出發,沿著圓周順時針向點M運動,射線MC與x軸交于D,與拋物線交于E,過點E作ME的垂線交拋物線的對稱軸于點F.
(1)求拋物線的解析式;
(2)當點C的運動路徑長為 時,求證:HD=2
HA.
(3)在點C運動過程中.是否存在這樣的位置,使得以點M,E,F為頂點的三角形與△AHQ相似?若存在,求出此位置時點E的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=ax2+bx+c的頂點為D(–1,2),與x軸的一個交點A在點(–3,0)和(–2,0)之間,其部分圖象如下圖,則以下結論:①b2–4ac<0;②a+b+c<0;③c–a=2;④方程ax2+bx+c–2=0有兩個相等的實數根.其中正確結論的個數為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點,連接AC、BC,過點C作∠BCP=∠BAC,交AB的延長線于點P,弦CD平分∠ACB,交AB于點E,連接OC、AD、BD.
(1)求證:PC為⊙O的切線;
(2)若OC=5,OE=1,求PC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】直線y=kx+b與反比例函數y=(x>0)的圖象分別交于點 A(m,3)和點B(6,n),與坐標軸分別交于點C和點D.
(1)求直線AB的解析式;
(2)若點P是x軸上一動點,當△COD與△ADP相似時,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 為滿足社區居民健身的需要,市政府準備采購若干套健身器材免費提供給社區,經考察,勁松公司有兩種型號的健身器可供選擇.
(1)勁松公司2015年每套型健身器的售價為
萬元,經過連續兩年降價,2017年每套售價為
萬元,求每套
型健身器年平均下降率
;
(2)2017年市政府經過招標,決定年內采購并安裝勁松公司兩種型號的健身器材共
套,采購專項費總計不超過
萬元,采購合同規定:每套
型健身器售價為
萬元,每套
型健身器售價我
萬元.
①型健身器最多可購買多少套?
②安裝完成后,若每套型和
型健身器一年的養護費分別是購買價的
和
.市政府計劃支出
萬元進行養護.問該計劃支出能否滿足一年的養護需要?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com