日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
已知:Rt△ABC的斜邊長為5,斜邊上的高為2,將這個直角三角形放置在平面直角坐標系中,使其斜邊AB與x軸重合(其中OA<OB),直角頂點C落在y軸正半軸上,點D的坐標為(2,0).
(1)填空:線段OA的長度為______,OB的長度為______,經過點A、B、C的拋物線的關系式為______;
(2)點P(m,n)是該拋物線上的一個動點(其中m>0,n>0),連接DP交BC于點E,當△BDE是等腰三角形時,請直接寫出此時點E的坐標.
(3)連接CD、CP,△CDP是否有最大面積?若有,求出△CDP的最大面積和此時點P的坐標;若沒有,請說明理由.

【答案】分析:(1)由Rt△ABC中,CO⊥AB可證△AOC∽△COB,由相似比得OC2=OA•OB,設OA的長為x,則OB=5-x,代入可求OA,OB的長,確定A,B,C三點坐標,求拋物線解析式;
(2)根據△BDE為等腰三角形,分為DE=EB,EB=BD,DE=BD三種情況,分別求E點坐標;
(3)將求△CDP的面積問題轉化,如圖4,連接OP,根據S△CDP=S四邊形CODP-S△COD=S△COP+S△ODP-S△COD,表示△CDP的面積;再利用二次函數的性質求出△CDP的最大面積和此時點P的坐標.
解答:(1)解:設OA的長為x,則OB=5-x;
∵OC=2,AB=5,∠BOC=∠AOC=90°,∠OAC=∠OCB;
∴△AOC∽△COB,
∴OC2=OA•OB
∴22=x(5-x),
解得:x1=1,x2=4,
∵OA<OB,∴OA=1,OB=4;
∴點A、B、C的坐標分別是:A(-1,0),B(4,0),C(0,2);
方法一:設經過點A、B、C的拋物線的關系式為:y=ax2+bx+2,
將A、B、C三點的坐標代入得:

解得:
所以這個二次函數的表達式為:y=-x2+x+2,
方法二:設過點A、B、C的拋物線的關系式為:y=a(x+1)(x-4),
將C點的坐標代入得:a=-
所以這個二次函數的表達式為:y=-x2+x+2,
故答案為:1,4,y=-x2+x+2;

(2)解:如圖1,當DE=EB時,過點E作EF⊥BD于點F,
∵BO=4,OD=2,∴BD=2,
∵DE=BE,EF⊥BD,
∴DF=FB=BD=1,
∴OF=OD+DF=3,
∵EF⊥BO,CO⊥BO,
∴EF∥CO,
∴△COB∽△EFB,
=
=
∴EF=
故E點坐標為:(3,),
如圖2,當EB=BD時,過點E作EM⊥BO于點M,
∵CO=2,BO=4,
∴BC=2
∵點D的坐標為(2,0),
∴BD=BE=4-2=2,
∵EM∥CO,
∴△COB∽△EMB,
=
=
∴EM=
==
∴BM=
∴MO=4-
∴故E點坐標為:(4-),
如圖3,當DE=BD時,過點E作EN⊥BO于點N,
設E點橫坐標為x,則ND=2-x,故BN=4-x,
=
∴EN=(4-x),
∴在Rt△END中,
EN2+ND2=ED2
即[(4-x)]2+(2-x)2=22
解得:x=
∴EN=(4-x)=
故點E的坐標是:(),
故當△BDE是等腰三角形時,點E的坐標分別是:(3,),(),(4-).

(3)解:如圖4,連接OP,
∵P點坐標為:(m,n),
∴P到CO距離為m,P到x軸距離為n,
S△CDP=S四邊形CODP-S△COD=S△COP+S△ODP-S△COD
=×2m+×2n-×2×2=m+n-2
=-m2+m,
=-(m-2+
∴當m=時,n=,此時△CDP的面積最大.此時P點的坐標為(),
S△CDP的最大值是
點評:本題考查了二次函數的綜合運用.關鍵是根據直角三角形中斜邊上的高分得的兩個三角形相似,以及根據等腰三角形的性質求E點坐標,利用作輔助線的方法表示△CDP的面積,由二次函數的性質求三角形面積的最大值.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,已知以Rt△ABC的邊AB為直徑作△ABC的外接圓⊙O,∠ABC的平分線BE交AC于D,交⊙O于E,過E作EF∥AC交BA的延長線于F.
(1)求證:EF是⊙O切線;
(2)若AB=3,EF=2,求CD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知以Rt△ABC的邊AB為直徑作△ABC的外接圓⊙O,∠B的平分線BE交AC于D,交⊙O于E,過E作EF精英家教網∥AC交BA的延長線于F.
(1)求證:EF是⊙O切線;
(2)若AB=15,EF=10,求AE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知以Rt△ABC的邊AB為直徑作△ABC的外接圓⊙O,∠B的平分線BE交AC于D,交
⊙O于E,過E作EF∥AC交BA的延長線于F.
(1)判斷直線EF與⊙O的位置關系,并說明理由;
(2)若AB=15,EF=10,求AE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2009•深圳)已知:Rt△ABC的斜邊長為5,斜邊上的高為2,將這個直角三角形放置在平面直角坐標系中,使其斜邊AB與x軸重合(其中OA<OB),直角頂點C落在y軸正半軸上(如圖1).
(1)求線段OA、OB的長和經過點A、B、C的拋物線的關系式.
(2)如圖2,點D的坐標為(2,0),點P(m,n)是該拋物線上的一個動點(其中m>0,n>0),連接DP交BC于點E.
①當△BDE是等腰三角形時,直接寫出此時點E的坐標.
②又連接CD、CP(如圖3),△CDP是否有最大面積?若有,求出△CDP的最大面積和此時點P的坐標;若沒有,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:Rt△ABC的斜邊長為5,斜邊上的高為2,將這個直角三角形放置在平面直角坐標系中,使其斜邊AB與x軸重合(其中OA<OB),直角頂點C落在y軸正半軸上,點D的坐標為(2,0).
(1)填空:線段OA的長度為
1
1
,OB的長度為
4
4
,經過點A、B、C的拋物線的關系式為
y=-
1
2
x2+
3
2
x+2
y=-
1
2
x2+
3
2
x+2

(2)點P(m,n)是該拋物線上的一個動點(其中m>0,n>0),連接DP交BC于點E,當△BDE是等腰三角形時,請直接寫出此時點E的坐標.
(3)連接CD、CP,△CDP是否有最大面積?若有,求出△CDP的最大面積和此時點P的坐標;若沒有,請說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 丝袜久久| av一级在线观看 | 俺要去97中文字幕 | 91精品国产色综合久久不卡98口 | 国产999精品久久久影片官网 | 天天舔夜夜| 亚洲精品乱码视频 | 懂色一区二区三区免费观看 | 色就是色欧美 | 日韩免费视频一区二区 | 亚洲综合精品 | 欧美一区二区三区黄色 | 午夜精品福利一区二区三区蜜桃 | 久久久久久99精品 | 激情.com| 日韩一区欧美 | 人人九九| 夜夜精品视频 | 国内自拍视频在线观看 | 欧美 日韩 中文 | 免费观看一级特黄欧美大片 | 亚洲热在线观看 | 麻豆久 | 日韩欧美中文字幕在线视频 | 国产精品亚洲成人 | 成人练习生 | 国产成人8x视频一区二区 | 亚欧在线观看 | 风间由美一区二区三区在线观看 | 午夜精品久久久久久99热软件 | 国内精品国产三级国产在线专 | 日韩伦理一区二区 | 性色爽爱 | 99久久99久久免费精品蜜臀 | 你懂的在线视频播放 | 亚洲色图p | 国产a网站 | 国产视频第一区 | 91精品国产一区二区三区 | 欧美三级 欧美一级 | 国产一区在线免费观看 |