【題目】如圖,AD是△ABC的高線,在BC邊上截取點E,使得CE=BD,過E作EF∥AB,過C作CP⊥BC交EF于點P。過B作BM⊥AC于M,連接EM、PM。
(1)依題意補全圖形;
(2)若AD=DC,探究EM與PM的數量關系與位置關系,并加以證明。
【答案】(1)見解析;(2)EM⊥PM,EM=PM,證明見解析.
【解析】
(1)根據要求畫出圖形即可;
(2)連接MD,證明△ABD≌△PEC,則AD=PC,可得出PC=DC,再證△DCM≌△PCM,則MD=MP,∠PMC=∠DMC,再證△MDB≌△MEC,則MD=ME,∠BMD=∠CME,即可得出EM與PM的數量關系與位置關系.
解:(1)補全的圖形如圖所示;
(2)EM⊥PM,EM=PM.
證明:連接DM,∵EF∥AB,∴∠ABD=∠PEC,
∵AD是△ABC的高線,CP⊥BC,
∴∠ADB=∠PCE=90°,
∵BD=EC,
∴△ABD≌△PEC,
∴AD=PC,
∵AD=DC,
∴PC=DC,
∵AD是△ABC的高線,CP⊥BC,AD=DC,
∴∠ACD=∠ACP=45°,
又∵CM=CM,
∴△DCM≌△PCM,
∴MD=MP,∠PMC=∠DMC;
∵BM⊥AC,∠ACD=45°,
∴MB=MC,∠ACD=∠MBC=45°,
又∵BD=CE,
∴△MDB≌△MEC,
∴MD=ME,∠BMD=∠CME,
∴MP=ME;
∵BM⊥AC,
∴∠BMD +∠DMC=90°,
∵∠BMD=∠CME,∠PMC=∠DMC,
∴∠CME +∠PMC =90°,即MP⊥ME,
∴EM與PM的數量關系與位置關系是:EM⊥PM,EM=PM.
科目:初中數學 來源: 題型:
【題目】小明租用共享單車從家出發,勻速騎行到相距米的圖書館還書.小明出發的同時,他的爸爸以每分鐘
米的速度從圖書館沿同一條道路步行回家,小明在圖書館停留了
分鐘后沿原路按原速返回.設他們出發后經過
(分)時,小明與家之間的距離為
(米),小明爸爸與家之間的距離為
(米),圖中折線
、線段
分別表示
、
與
之間的函數關系的圖象.小明從家出發,經過___分鐘在返回途中追上爸爸.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,四邊形ABCD四條邊上的中點分別為E、F、G、H,順次連接EF、FG、GH、HE,得到四邊形EFGH(即四邊形ABCD的中點四邊形).
(1)四邊形EFGH的形狀是 _____________ ,(證明你的結論. )
(2)當四邊形ABCD的對角線滿足 __________條件時,四邊形EFGH是矩形(不用證明)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在等邊三角形ABC中,BC=8cm,射線AG∥BC,點E從點A出發沿射線AG以1cm/s的速度運動,同時點F從點B出發沿射線BC以2cm/s的速度運動,設運動時間為t(s).
(1)連接EF,當EF經過AC邊的中點D時,求證:四邊形AFCE是平行四邊形;
(2)填空:①當t為 s時,四邊形ACFE是菱形;②當t為 s時,△ACE的面積是△ACF的面積的2倍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解學生整體的數學學習能力,年級組織了“數學鉆石活動”,從中隨機抽取部分學生的成績進行統計分析,整理得到如下不完整的頻數分布表和數分布直方圖:
(1)表中的 ,
;
(2)把上面的頻數分布直方圖補充完整;
(3)根據調查結果,估計年級500名學生中,成績不低于85分的人數。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形的頂點
、
分別在
、
軸的正半軸上,點
在反比例函數
的第一象限內的圖像上,
,
,動點
在
軸的上方,且滿足
.
(1)若點在這個反比例函數的圖像上,求點
的坐標;
(2)連接、
,求
的最小值;
(3)若點是平面內一點,使得以
、
、
、
為頂點的四邊形是菱形,則請你直接寫出滿足條件的所有點
的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將正方形 ABCD 繞點 A 按逆時針方向旋轉到正方形AB ' C ' D ' ,旋轉角為 ( 0<< 180 ) ,連接 B ' D 、 C ' D ,若 B ' D C ' D ,則 =____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)按要求將下列幾何體進行分類,并將分類后幾何體的名稱寫在對應的括號內.
柱體:{ …}
錐體:{ …}
(2)6個完全相同的正方體組成如圖所示的幾何體,畫出該幾何體從正面,左面看到的形狀圖(用陰影畫在所給的方格中)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD為菱形,E為對角線AC上的一個動點,連結DE并延長交射線AB于點F,連結BE.
(1)求證:∠AFD=∠EBC;
(2)若∠DAB=90°,當△BEF為等腰三角形時,求∠EFB的度數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com