日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
(2009•梅州)如圖所示,已知直線L過點A(0,1)和B(1,0),P是x軸正半軸上的動點,OP的垂直平分線交L于點Q,交x軸于點M.
(1)直接寫出直線L的解析式;
(2)設OP=t,△OPQ的面積為S,求S關于t的函數關系式;并求出當0<t<2時,S的最大值;
(3)直線L1過點A且與x軸平行,問在L1上是否存在點C,使得△CPQ是以Q為直角頂點的等腰直角三角形?若存在,求出點C的坐標,并證明;若不存在,請說明理由.

【答案】分析:(1)已知直線L過A,B兩點,可將兩點的坐標代入直線的解析式中,用待定系數法求出直線L的解析式;
(2)求三角形OPQ的面積,就需知道底邊OP和高QM的長,已知了OP為t,關鍵是求出QM的長.已知了QM垂直平分OP,那么OM=t,然后要分情況討論:
①當OM<OB時,即0<t<2時,BM=OB-OM,然后在等腰直角三角形BQM中,即可得出QM=BM,由此可根據三角形的面積公式得出S與t的函數關系式.
②當OM>OB時,即當t≥2時,BM=OM-OB,然后根據①的方法即可得出S與t的函數關系式.
然后可根據0<t<2時的函數的性質求出S的最大值;
(3)如果存在這樣的點C,那么CQ=QP=OQ,因此C,O就關于直線BL對稱,因此C的坐標應該是(1,1).那么只需證明CQ⊥PQ即可.分三種情況進行討論.
①當Q在線段AB上(Q,B不重合),且P在線段OB上時.要證∠CQP=90°,那么在四邊形CQPB中,就需先證出∠QCB與∠QPB互補,由于∠QPB與∠QPO互補,而∠QPO=∠QOP,因此只需證∠QCB=∠QOB即可,根據折疊的性質,這兩個角相等,由此可得證.

②當Q在線段AB上,P在OB的延長線上時,根據①已得出∠QPB=∠QCB,那么這兩個角都加上一個相等的對頂角后即可得出∠CQP=∠CBP=90度.
③當Q與B重合時,很顯然,三角形CQP應該是個等腰直角三角形.
綜上所述即可得出符合條件C點的坐標.
解答:解:由題意得
(1)y=1-x;

(2)∵OP=t,
∴Q點的橫坐標為
①當,即0<t<2時,
∴S△OPQ=t(1-t).
②當t≥2時,QM=|1-t|=t-1,
∴S△OPQ=t(t-1).

當0<t<1,即0<t<2時,S=t(1-t)=-(t-1)2+
∴當t=1時,S有最大值


(3)由OA=OB=1,
所以△OAB是等腰直角三角形,
若在L1上存在點C,使得△CPQ是以Q為直角頂點的等腰直角三角形,
則PQ=QC,
所以OQ=QC,又L1∥x軸,則C,O兩點關于直線L對稱,
所以AC=OA=1,得C(1,1).下面證∠PQC=90度.連CB,則四邊形OACB是正方形.
①當點P在線段OB上,Q在線段AB上(Q與B、C不重合)時,如圖-1.
由對稱性,得∠BCQ=∠QOP,∠QPO=∠QOP,
∴∠QPB+∠QCB=∠QPB+∠QPO=180°,
∴∠PQC=360°-(∠QPB+∠QCB+∠PBC)=90度.
②當點P在線段OB的延長線上,Q在線段AB上時,如圖-2,如圖-3
∵∠QPB=∠QCB,∠1=∠2,
∴∠PQC=∠PBC=90度.
③當點Q與點B重合時,顯然∠PQC=90度.
綜合①②③,∠PQC=90度.
∴在L1上存在點C(1,1),使得△CPQ是以Q為直角頂點的等腰直角三角形.
點評:本題結合了三角形的相關知識考查了一次函數及二次函數的應用,要注意的是(2)中為保證線段的長度不為負數要分情況進行求解.(3)中由于Q,P點的位置不確定,因此要分類進行討論不要漏解.
練習冊系列答案
相關習題

科目:初中數學 來源:2009年全國中考數學試題匯編《二次函數》(07)(解析版) 題型:解答題

(2009•梅州)如圖所示,已知直線L過點A(0,1)和B(1,0),P是x軸正半軸上的動點,OP的垂直平分線交L于點Q,交x軸于點M.
(1)直接寫出直線L的解析式;
(2)設OP=t,△OPQ的面積為S,求S關于t的函數關系式;并求出當0<t<2時,S的最大值;
(3)直線L1過點A且與x軸平行,問在L1上是否存在點C,使得△CPQ是以Q為直角頂點的等腰直角三角形?若存在,求出點C的坐標,并證明;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年中考數學模擬試卷(2)(解析版) 題型:解答題

(2009•梅州)如圖所示,已知直線L過點A(0,1)和B(1,0),P是x軸正半軸上的動點,OP的垂直平分線交L于點Q,交x軸于點M.
(1)直接寫出直線L的解析式;
(2)設OP=t,△OPQ的面積為S,求S關于t的函數關系式;并求出當0<t<2時,S的最大值;
(3)直線L1過點A且與x軸平行,問在L1上是否存在點C,使得△CPQ是以Q為直角頂點的等腰直角三角形?若存在,求出點C的坐標,并證明;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年中考復習數學調查試卷(解析版) 題型:解答題

(2009•梅州)如圖所示,已知直線L過點A(0,1)和B(1,0),P是x軸正半軸上的動點,OP的垂直平分線交L于點Q,交x軸于點M.
(1)直接寫出直線L的解析式;
(2)設OP=t,△OPQ的面積為S,求S關于t的函數關系式;并求出當0<t<2時,S的最大值;
(3)直線L1過點A且與x軸平行,問在L1上是否存在點C,使得△CPQ是以Q為直角頂點的等腰直角三角形?若存在,求出點C的坐標,并證明;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2009年廣東省梅州市中考數學試卷(解析版) 題型:解答題

(2009•梅州)如圖所示,已知直線L過點A(0,1)和B(1,0),P是x軸正半軸上的動點,OP的垂直平分線交L于點Q,交x軸于點M.
(1)直接寫出直線L的解析式;
(2)設OP=t,△OPQ的面積為S,求S關于t的函數關系式;并求出當0<t<2時,S的最大值;
(3)直線L1過點A且與x軸平行,問在L1上是否存在點C,使得△CPQ是以Q為直角頂點的等腰直角三角形?若存在,求出點C的坐標,并證明;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 在线国产一区 | 91偷拍精品一区二区三区 | 成人亚洲在线观看 | 国产日韩视频在线观看 | 欧美日韩亚洲天堂 | 国产福利91精品一区二区三区 | 欧美日韩黄 | 欧美综合国产精品久久丁香 | 米奇狠狠狠狠8877 | 性高湖久久久久久久久 | 午夜免费| 国产成人精品免高潮在线观看 | 九七超碰在线 | 中文字幕三区 | 欧美三级网站 | 视频在线一区 | 91视频在线| 日韩成人久久 | 欧美激情欧美激情在线五月 | 91天堂| 插插射啊爱视频日a级 | 精品久久一区二区三区 | 欧美激情综合五月色丁香小说 | 国产精品亚洲一区 | 国产精品多久久久久久情趣酒店 | 国产精品久久久久免费视频 | 国产精品久久久久久久久免费桃花 | 欧美日韩精品一区二区三区 | 黄色免费看视频 | 日本三级网址 | 在线视频第一页 | 日日综合| 欧美一区二区视频免费观看 | 97久久久国产精品 | 日韩一区二区在线观看 | 精品一区二区免费视频 | 日韩成人午夜电影 | 国产一区二区精品 | 欧美一区二区三区视频在线 | 欧美精品第一页 | 超碰中文字幕 |