【題目】為了解某中學學生課余活動情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數進行調查統計,現從該校隨機抽取名學生作為樣本,采用問卷調查的方式收集數據(參與問卷調查的每名學生只能選擇其中--項),并據調查得到的數據繪制成了如圖所示的兩幅不完整的統計圖,由圖中提供的信息,解答下列問題:
(1) ,直接補全條形統計圖;
(2)若該校共有學生名,試估計該校喜愛看課外書的學生人數;
(3)若被調查喜愛體育活動的名學生中有
名男生和
名女生,現從這
名學生中任意抽取
名,請用列表或畫樹狀圖的方法求恰好抽到
名男生的概率.
【答案】(1)50,補全條形統計圖見解析;(2)所以估計該校喜愛看課外書的學生人數為人;(3)恰好抽到
名男生的概率為
.
【解析】
(1)先用喜愛社會實踐的人數除以它所占的百分比計算出調查的總人數n,再計算出看電視的人數,然后補全條形統計圖;
(2)用3200乘以樣本中喜愛看課外書人數的百分比可估計該校喜愛看課外書的學生人數;
(3)畫樹狀圖展示所有12種等可能的結果數,再找出恰好抽到2名男生的結果數,然后根據概率公式計算.
解:(1)調查的總人數(人),
所以看電視的人數為(人),
補全條形統計圖為:
(人),
所以估計該校喜愛看課外書的學生人數為人;
畫樹狀圖為:
共有種等可能的結果數,其中恰好抽到
名男生的結果數為6,
所以恰好抽到名男生的概率為
.
科目:初中數學 來源: 題型:
【題目】在一個不透明的盒子里裝有4個標有1,2,3,4的小球,它們形狀、大小完全相同.小明從盒子里隨機取出一個小球,記下球上的數字,作為點P的橫坐標x,放回然后再隨機取出一個小球,記下球上的數字,作為點P的縱坐標y.
(1)畫樹狀圖或列表,寫出點P所有可能的坐標;
(2)求出點P在以原點為圓心,5為半徑的圓上的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(感知)如圖①,正方形中,點
在
邊上,
平分
.若我們分別延長
與
,交于點
,則易證
.(不需要證明)
(探究)如圖②,在矩形中,點
在
邊的中點,點
在
邊上,
平分
.求證:
.
(應用)在(探究)的條件下,若,
,直接寫出
的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,拋物線y=x2+bx+c經過A、B兩點,A、B兩點的坐標分別為(﹣1,0)、(0,﹣3).
(1)求拋物線的函數解析式;
(2)點E為拋物線的頂點,點C為拋物線與x軸的另一交點,點D為y軸上一點,且DC=DE,求出點D的坐標;
(3)在第二問的條件下,在直線DE上存在點P,使得以C、D、P為頂點的三角形與△DOC相似,請你直接寫出所有滿足條件的點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解某市初中學生課外閱讀情況,調查小組對該市這學期初中學生閱讀課外書籍的冊數進行了抽樣調查,并根據調查結果繪制成如下統計圖.
根據統計圖提供的信息,解答下列問題:
(1)本次抽樣調查的樣本容量是 ;
(2)補全條形統計圖;
(3)該市共有12000名初中生,估計該市初中學生這學期課外閱讀超過2冊的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,DEF分別為△ABC邊ACABBC上的點,∠A=∠1=∠C,DE=DF.下面的結論一定成立的是( )
A. AE=FC B. AE=DE C. AE+FC=AC D. AD+FC=AB
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】知,拋物線(a
0)的頂點為A(s,t)(其中s
0) .
(1)若拋物線經過(2,2)和(-3,37)兩點,且s=3.
①求拋物線的解析式;
②若n>3, 設點M(),N(
)在拋物線上,比較
,
的大小關系,并說明理由;
(2)若a=2,c=-2,直線與拋物線
的交于點P和點Q,點P的橫坐標為h,點Q的橫坐標為h+3,求出b和h的函數關系式;
(3)若點A在拋物線上,且2≤s<3時,求a的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩人要某風景區游玩,每天某一時段開往該景區有三輛汽車(票價相同),但是他們不清楚這三輛車的舒適程度,也不知道汽車開來的順序,兩人采用了不同的乘車方案:
甲無論如何總是上開來的第一輛車,而乙則是先觀察后上車,當第一輛車開來時,他不上車,而是仔細觀察車輛的舒適狀況,如果第二輛車狀況比第一輛好,他就上第二輛車,如果第二輛不比第一輛好,他就上第三輛車.這三輛車的舒適程度為上、中、下三等,請解決下面的問題:
(1)請用畫樹形圖或列表的方法分析這三輛車出現的先后順序,寫出所有可能的結果;(用上中下表示)
(2)分析甲、乙兩人采用的方案,誰的方案使自己坐上上等車的可能性大,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】重慶朝天門碼頭位于置慶市油中半島的嘉陵江與長江交匯處,是重慶最古老的碼頭.如圖,小王在碼頭某點E處測得朝天門廣場上的某高樓AB的頂端A的仰角為45°,接著他沿著坡度為1:2.4的斜坡EC走了26米到達坡頂C處,到C處后繼續朝高樓AB的方向前行16米到D處,在D處測得A的仰角為74°,則此時小王距高樓的距離BD的為( 。┟祝ńY果精確到1米,參考數據:sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)
A.12B.13C.15D.16
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com