日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

將正三角形ABC各邊三等分,設分點為DEFGHI.求證DEFGHI是正六邊形.

答案:
解析:

可證DEEFFGGHHIID,∠DEF=∠EFG=∠FGH=∠GHI=∠HID=∠IDE=120°.∴DEFGHI是正六邊形.


練習冊系列答案
相關習題

科目:初中數學 來源: 題型:閱讀理解

(2012•青島模擬)同學們已經認識了很多正多邊形,現以正六邊形為例再介紹與正多邊形相關的幾個概念.如正六邊形ABCDEF各邊對稱軸的交點O,又稱正六邊形的中心,其中OA稱正六邊形的半徑,通常用R表示,∠AOB稱為中心角,顯然.提出問題:正多邊形內任意一點到各邊距離之和與這個正多邊形的半徑R和中心角有什么關系?
探索發現:
(1)為了解決這個問題,我們不妨從最簡單的正多邊形--正三角形入手.
如圖①,△ABC是正三角形,半徑OA=R,∠AOB是中心角,P是△ABC內任意一點,P到△ABC各邊距離分別為h1、h2、h3 ,確定h1+h2+h3的值與△ABC的半徑R及中心角的關系.
解:設△ABC的邊長是a,面積為S,顯然S=
1
2
a(h1+h2+h3
O為△ABC的中心,連接OA、OB、OC,它們將△ABC分成三個全等的等腰三角形,過點O作OM⊥AB,垂足為M,Rt△AOM中,易知
OM=OAcos∠AOM=Rcos
1
2
∠AOB=Rcos
1
2
×120°=Rcos60°,
AM=OAsin∠AOM=Rsin
1
2
∠AOB=Rsin
1
2
×120°=Rcos60°
∴AB=a=2AM=2Rsin60°
∴S△AOB=
1
2
AB×OM=
1
2
×2Rsin60°•Rcos60°=R2sin60°cos60°
∴S△ABC=3S△AOB=3R2sin60°cos60°
1
2
a(h1+h2+h3)=3R2sin60°cos60°
即:
1
2
×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
∴h1+h2+h3=3Rcos60°
(2)如圖②,五邊形ABCDE是正五邊形,半徑是R,P是正五邊形ABCDE內任意一點,P到五邊形ABCDE各邊距離分別為h1、h2、h3、h4、h5,參照(1)的探索過程,確定h1+h2+h3+h4+h5的值與正五邊形ABCDE的半徑R及中心角的關系.
(3)類比上述探索過程,直接填寫結論
正六邊形(半徑是R)內任意一點P到各邊距離之和 h1+h2+h3+h4+h5+h6=
6Rcos30°
6Rcos30°

正八邊形(半徑是R)內任意一點P到各邊距離之和 h1+h2+h3+h4+h5+h6+h7+h8=
8Rcos22.5°
8Rcos22.5°

正n邊形(半徑是R)內任意一點P到各邊距離之和  h1+h2+…+hn=
nRcos
180°
n
nRcos
180°
n

查看答案和解析>>

科目:初中數學 來源:101網校同步練習 初三數學 人教版(新課標2004年初審) 人教實驗版 題型:047

將正三角形ABC各邊三等分,設分點為D、E、F、G、H、I.求證:多邊形DEFGHI是正六邊形.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

同學們已經認識了很多正多邊形,現以正六邊形為例再介紹與正多邊形相關的幾個概念.如正六邊形ABCDEF各邊對稱軸的交點O,又稱正六邊形的中心,其中OA稱正六邊形的半徑,通常用R表示,∠AOB稱為中心角,顯然.提出問題:正多邊形內任意一點到各邊距離之和與這個正多邊形的半徑R和中心角有什么關系?
探索發現:
(1)為了解決這個問題,我們不妨從最簡單的正多邊形--正三角形入手.
如圖①,△ABC是正三角形,半徑OA=R,∠AOB是中心角,P是△ABC內任意一點,P到△ABC各邊距離分別為h1、h2、h3 ,確定h1+h2+h3的值與△ABC的半徑R及中心角的關系.
解:設△ABC的邊長是a,面積為S,顯然S=數學公式a(h1+h2+h3
O為△ABC的中心,連接OA、OB、OC,它們將△ABC分成三個全等的等腰三角形,過點O作OM⊥AB,垂足為M,Rt△AOM中,易知
OM=OAcos∠AOM=Rcos數學公式∠AOB=Rcos數學公式×120°=Rcos60°,
AM=OAsin∠AOM=Rsin數學公式∠AOB=Rsin數學公式×120°=Rcos60°
∴AB=a=2AM=2Rsin60°
∴S△AOB=數學公式AB×OM=數學公式×2Rsin60°•Rcos60°=R2sin60°cos60°
∴S△ABC=3S△AOB=3R2sin60°cos60°
數學公式a(h1+h2+h3)=3R2sin60°cos60°
即:數學公式×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
∴h1+h2+h3=3Rcos60°
(2)如圖②,五邊形ABCDE是正五邊形,半徑是R,P是正五邊形ABCDE內任意一點,P到五邊形ABCDE各邊距離分別為h1、h2、h3、h4、h5,參照(1)的探索過程,確定h1+h2+h3+h4+h5的值與正五邊形ABCDE的半徑R及中心角的關系.
(3)類比上述探索過程,直接填寫結論
正六邊形(半徑是R)內任意一點P到各邊距離之和 h1+h2+h3+h4+h5+h6=________
正八邊形(半徑是R)內任意一點P到各邊距離之和 h1+h2+h3+h4+h5+h6+h7+h8=________
正n邊形(半徑是R)內任意一點P到各邊距離之和 h1+h2+…+hn=________.

查看答案和解析>>

科目:初中數學 來源:2012年山東省青島市中考數學調研試卷(解析版) 題型:解答題

同學們已經認識了很多正多邊形,現以正六邊形為例再介紹與正多邊形相關的幾個概念.如正六邊形ABCDEF各邊對稱軸的交點O,又稱正六邊形的中心,其中OA稱正六邊形的半徑,通常用R表示,∠AOB稱為中心角,顯然.提出問題:正多邊形內任意一點到各邊距離之和與這個正多邊形的半徑R和中心角有什么關系?
探索發現:
(1)為了解決這個問題,我們不妨從最簡單的正多邊形--正三角形入手.
如圖①,△ABC是正三角形,半徑OA=R,∠AOB是中心角,P是△ABC內任意一點,P到△ABC各邊距離分別為h1、h2、h3 ,確定h1+h2+h3的值與△ABC的半徑R及中心角的關系.
解:設△ABC的邊長是a,面積為S,顯然S=a(h1+h2+h3
O為△ABC的中心,連接OA、OB、OC,它們將△ABC分成三個全等的等腰三角形,過點O作OM⊥AB,垂足為M,Rt△AOM中,易知
OM=OAcos∠AOM=Rcos∠AOB=Rcos×120°=Rcos60°,
AM=OAsin∠AOM=Rsin∠AOB=Rsin×120°=Rcos60°
∴AB=a=2AM=2Rsin60°
∴S△AOB=AB×OM=×2Rsin60°•Rcos60°=R2sin60°cos60°
∴S△ABC=3S△AOB=3R2sin60°cos60°
a(h1+h2+h3)=3R2sin60°cos60°
即:×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
∴h1+h2+h3=3Rcos60°
(2)如圖②,五邊形ABCDE是正五邊形,半徑是R,P是正五邊形ABCDE內任意一點,P到五邊形ABCDE各邊距離分別為h1、h2、h3、h4、h5,參照(1)的探索過程,確定h1+h2+h3+h4+h5的值與正五邊形ABCDE的半徑R及中心角的關系.
(3)類比上述探索過程,直接填寫結論
正六邊形(半徑是R)內任意一點P到各邊距離之和 h1+h2+h3+h4+h5+h6=______
正八邊形(半徑是R)內任意一點P到各邊距離之和 h1+h2+h3+h4+h5+h6+h7+h8=______
正n邊形(半徑是R)內任意一點P到各邊距離之和  h1+h2+…+hn=______.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品一区二 | www.欧美精品 | 99精品色 | 成人免费视屏 | 免费视频a | 色偷偷噜噜噜亚洲男人 | 欧美日韩一区二区在线观看 | 国产精品二区一区二区aⅴ污介绍 | 精品免费国产一区二区三区四区 | 日本一区二区高清 | 一级黄色录像片 | 欧美亚洲激情 | 午夜精品久久久久久久99黑人 | 国产麻豆xxxvideo实拍 | 精品免费在线 | 在线成人免费 | 欧美一级片免费观看 | 美女免费视频网站 | 亚洲小视频在线观看 | 国产精品一区二区在线播放 | 四虎网站| 成人深夜福利视频 | 亚洲精品福利视频 | 亚洲精品网站在线观看 | 国产福利视频 | 99视频网 | 国产一区二区三区 | 韩国精品一区 | 狠狠干狠狠干 | 日韩在线免费视频 | 婷婷综合五月天 | 成年人一级片 | 欧美专区在线观看 | av网站观看| 久久视频免费 | 日韩欧美在线一区 | 国产综合区| 全部免费毛片在线播放高潮 | 久久一级视频 | 亚洲一区欧美 | 国产亚洲精品成人av久久ww |