【題目】已知一次函數y=ax+b過一,二,四象限,且過(6,0),則關于二次函數y=ax2+bx+1的以下說法:①圖象與x軸有兩個交點;②a<0,b>0;③當x=3時函數有最小值;④若存在一個實數m,當x≤m時,y隨x的增大而增大,則m≤3.其中正確的是( )
A. ①②B. ①②③C. ①②④D. ②③④
科目:初中數學 來源: 題型:
【題目】“金山銀山,不如綠水青山”.鄂爾多斯市某旗區不斷推進“森林城市”建設,今春種植四類樹苗,園林部門從種植的這批樹苗中隨機抽取了4000棵,將各類樹苗的種植棵數繪制成扇形統計圖,將各類樹苗的成活棵數繪制成條形統計圖,經統計松樹和楊樹的成活率較高,且楊樹的成活率為97%,根據圖表中的信息解答下列問題:
(1)扇形統計圖中松樹所對的圓心角為 度,并補全條形統計圖.
(2)該旗區今年共種樹32萬棵,成活了約多少棵?
(3)園林部門決定明年從這四類樹苗中選兩類種植,請用列表法或樹狀圖求恰好選到成活率較高的兩類樹苗的概率.(松樹、楊樹、榆樹、柳樹分別用A,B,C,D表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=ax2+bx+c(a≠0)的圖象經過點(﹣1,2),且與x軸交點的橫坐標分別為x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列結論:①4a﹣2b+c<0;②2a﹣b<0;③a<0;④b2+8a>4ac,其中正確的有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在平面直角坐標系中,圓心為P(x,y)的動圓經過點A(1,2)且與x軸相切于點B.
(1)當x=2時,求⊙P的半徑;
(2)求y關于x的函數解析式,請判斷此函數圖象的形狀,并在圖②中畫出此函數的圖象;
(3)請類比圓的定義(圖可以看成是到定點的距離等于定長的所有點的集合),給(2)中所得函數圖象進行定義:此函數圖象可以看成是到 的距離等于到 的距離的所有點的集合.
(4)當⊙P的半徑為1時,若⊙P與以上(2)中所得函數圖象相交于點C、D,其中交點D(m,n)在點C的右側,請利用圖②,求cos∠APD的大小.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,AE⊥BD,CF⊥BD,E,F分別為垂足.
(1)求證:四邊形AECF是平行四邊形;
(2)如果AE=3,EF=4,求AF、EC所在直線的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綠色生態農場生產并銷售某種有機產品,假設生產出的產品能全部售出.如圖,線段EF、折線ABCD分別表示該有機產品每千克的銷售價y1(元)、生產成本y2(元)與產量x(kg)之間的函數關系.
(1)求該產品銷售價y1(元)與產量x(kg)之間的函數關系式;
(2)直接寫出生產成本y2(元)與產量x(kg)之間的函數關系式;
(3)當產量為多少時,這種產品獲得的利潤最大?最大利潤為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(提出問題)如圖1,小東將一張AD為12,寬AB為4的長方形紙片按如下方式進行折疊:在紙片的一邊BC上分別取點P、Q,使得BP=CQ,連結AP、DQ,將△ABP、△DCQ分別沿AP、DQ折疊得△APM,△DQN,連結MN.小東發現線段MN的位置和長度隨著點P、Q的位置發生改變.
(規律探索)
(1)請在圖1中過點M,N分別畫ME⊥BC于點E,NF⊥BC于點F.
求證:①ME=NF;②MN∥BC.
(解決問題)
(2)如圖1,若BP=3,求線段MN的長;
(3)如圖2,當點P與點Q重合時,求MN的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了開闊學生的視野,積極組織學生參加課外讀書活動.“放飛夢想”讀書小組協助老師隨機抽取本校的部分學生,調查他們最喜愛的圖書類別(圖書分為文學類、藝體類、科普類、其他等四類),并將調查結果繪制成如下兩幅不完整的統計圖,請你結合圖中的信息解答下列問題:
(1)求被調查的學生人數;
(2)補全條形統計圖;
(3)已知該校有1200名學生,估計全校最喜愛文學類圖書的學生有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在中,
,
,
,過點
作直線
,將
繞點
順時針旋轉得到
(點
,
的對應點分別為
,
),射線
,
分別交直線
于點
,
.
(1)如圖1,當與
重合時,求
的度數;
(2)如圖2,設與
的交點為
,當
為
的中點時,求線段
的長;
(3)在旋轉過程中,當點,
分別在
,
的延長線上時,試探究四邊形
的面積是否存在最小值.若存在,求出四邊形
的最小面積;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com