已知以(-1,0)為圓心,1為半徑的⊙M和拋物線y=x2+6x+11,現有兩個命題:
(1)拋物線y=x2+6x+11與⊙M沒有交點;
(2)將拋物線y=x2+6x+11向下平移3個單位,則此拋物線與⊙M相交.
則以下結論正確的是( )
A.只有命題(1)正確
B.只有命題(2)正確
C.命題(1),(2)都正確
D.命題(1),(2)都不正確
【答案】分析:(1)把拋物線化為頂點坐標式,然后找出拋物線的頂點坐標,判定拋物線與圓有沒有交點.(2)找出平移后的拋物線頂點的坐標,再判斷拋物線與圓是否相交.
解答:解:(1)y=x2+6x+11=(x+3)2+2;所以頂點坐標是(-3,2),拋物線開口向上,頂點在x軸上方;⊙M上最高點為(-1,1),所以拋物線y=x2+6x+11與⊙M沒有交點.
(2)y=(x+3)2+2向下平移3個單位得:y=(x+3)2-1=x2+6x+8;當y=0時,x2+6x+8=0,解得x=-2或-4;所以拋物線與x軸有一交點是(-2,0),拋物線的頂點是(-3,-1),在圓的下方,拋物線開口向上,⊙M最左邊點為(-2,0),所以拋物線與圓相交.
故選C.
點評:此題不僅考查了對平移的理解,同時考查了圓的知識和考查了學生將一般式轉化頂點式的能力.