【題目】如圖,在菱形ABCD中,AB=BD,點E、F分別在BC、CD上,且BE=CF,連接BF、DE交于點M,延長ED到H使DH=BM,連接AM,AH,則以下四個結論:
①△BDF≌△DCE;②∠BMD=120°;③△AMH是等邊三角形;④S四邊形ABMD= AM2 .
其中正確結論的個數是( 。
A.1
B.2
C.3
D.4
【答案】D
【解析】解:在菱形ABCD中,
∵AB=BD,
∴AB=BD=AD,
∴△ABD是等邊三角形,
∴根據菱形的性質可得∠BDF=∠C=60°,
∵BE=CF,
∴BC﹣BE=CD﹣CF,
即CE=DF,
在△BDF和△DCE中, ,
∴△BDF≌△DCE(SAS),故①小題正確;
∴∠DBF=∠EDC,
∵∠DMF=∠DBF+∠BDE=∠EDC+∠BDE=∠BDC=60°,
∴∠BMD=180°﹣∠DMF=180°﹣60°=120°,故②小題正確;
∵∠DEB=∠EDC+∠C=∠EDC+60°,∠ABM=∠ABD+∠DBF=∠DBF+60°,
∴∠DEB=∠ABM,
又∵AD∥BC,
∴∠ADH=∠DEB,
∴∠ADH=∠ABM,
在△ABM和△ADH中, ,
∴△ABM≌△ADH(SAS),
∴AH=AM,∠BAM=∠DAH,
∴∠MAH=∠MAD+∠DAH=∠MAD+∠BAM=∠BAD=60°,
∴△AMH是等邊三角形,故③小題正確;
∵△ABM≌△ADH,
∴△AMH的面積等于四邊形ABMD的面積,
又∵△AMH的面積= AM
AM=
AM2 ,
∴S四邊形ABMD= AM2 , 故④小題正確,
綜上所述,正確的是①②③④共4個.
故選D.
【考點精析】利用菱形的性質對題目進行判斷即可得到答案,需要熟知菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半.
科目:初中數學 來源: 題型:
【題目】如圖,一個半徑為18 cm的圓,從中心挖去一個正方形,當挖去的正方形的邊長由小變大時,剩下部分的面積也隨之發生變化.
(1)若挖去的正方形邊長為x(cm),剩下部分的面積為y(cm2),則y與x之間的關系式是什么?
(2)當挖去的正方形的邊長由1 cm變化到9 cm時,剩下部分的面積由____變化到____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“十一”長假期間,小張和小李決定騎自行車外出旅游,兩人相約一早從各自家中出發,已知兩家相距10千米,小張出發必過小李家.
(1)若兩人同時出發,小張車速為20千米,小李車速為15千米,經過多少小時能相遇?
(2)若小李的車速為10千米,小張提前20分鐘出發,兩人商定小李出發后半小時二人相遇,則小張的車速應為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某玩具廠分別安排甲乙兩個車間加工1000個同一型號的奧運會吉祥物,每名工人每天加工吉祥物的個數相等且保持不變,由于生產需要,其中一個車間推遲兩天開始加工,剛開始加工時,甲車間有10名工人,乙車間有12名工人,圖中線段OB和折線ACB分別表示兩個車間的加工情況.依據圖中提供的信息,完成下列各題:
(1)線段OB反映的是 車間的加工情況;
(2)開始加工后,甲車間加工多少天后,兩車間加工吉祥物數相同?
(3)根據折線段反映的加工情況,請你提出一個問題,并給出解答.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲乙兩人勻速從同一地點到1500米處的圖書館看書,甲出發5分鐘后,乙以50米/分的速度沿同一路線行走.設甲乙兩人相距(米),甲行走的時間為
(分),
關于
的函數函數圖像的一部分如圖所示.
(1)求甲行走的速度;
(2)在坐標系中,補畫關于
函數圖象的其余部分;
(3)問甲、乙兩人何時相距360米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知∠AOB=α°,∠COD在∠AOB內部且∠COD=β°.
(1)若α,β滿足|α-2β|+(β-60)2=0,則①α= ;
②試通過計算說明∠AOD與∠COB有何特殊關系;
(2)在(1)的條件下,如果作OE平分∠BOC,請求出∠AOC與∠DOE的數量關系;
(3)若α°,β°互補,作∠AOC,∠DOB的平分線OM,ON,試判斷OM與ON的位置關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都為的大正方形,兩塊是邊長都為
的小正方形,五塊是長為
、寬為
的全等小矩形,且
>
.(以上長度單位:cm)
(1)觀察圖形,可以發現代數式可以因式分解為 ;
(2)若每塊小矩形的面積為10,四個正方形的面積和為58
,試求圖中所有裁剪線(虛線部分)長之和.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在2012年6月3號國際田聯鉆石聯賽美國尤金站比賽中,百米跨欄飛人劉翔以12.87s的成績打破世界記錄并輕松奪冠.A、B兩鏡頭同時拍下了劉翔沖刺時的畫面(如圖),從鏡頭B觀測到劉翔的仰角為60°,從鏡頭A觀測到劉翔的仰角為30°,若沖刺時的身高大約為1.88m,請計算A、B兩鏡頭之間的距離為 . (結果保留兩位小數, ≈1.414,
≈1.732)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知O為直線AB上一點,∠COE為直角,OF平分∠AOE.
(1)如圖1,若∠COF=30°,則∠BOE=_______;若∠COF=m°,則∠BOE=_______,∠BOE和∠COF的數量關系為___________;
(2)當射線OE繞點O逆時針旋轉到圖2的位置時,(1)中∠BOE和∠COF的數量關系是否仍成立?請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com