日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

如圖,已知拋物線經過原點O,與x軸交于另一點A,它的對稱軸x=2與x軸交于點C,直線y=2x+1經過拋物線上一點B(m,-3),且與y軸、直線x=2分別交于點D,E.

(1)求拋物線對應的函數解析式并用配方法把這個解析式化成y=a(x-h)2+k的形式;

(2)求證:CD⊥BE;

(3)在對稱軸x=2上是否存在點P,使△PBE是直角三角形,如果存在,請求出點P的坐標,并求出△PAB的面積;如果不存在,請說明理由.

答案:
解析:

  解:(1)∵已知拋物線的對稱軸為

  ∴設拋物線的解析式為

  又∵直線經過點B(),

  ∴,解得,

  ∴點B(),

  又∵二次函數的圖象經過0(0,0)

  B(),

  

  解得

  ∴拋物線的解析式為

  (2)由題意解方程組,得

  ∴點E的坐標為(2,5),∴CE=5.

  過點B作BF垂直于軸于F,

  作BH垂直于直線于H,交軸于點Q,

  ∵點B(),D(0,1),

  ∴BF=3,BH=4,CH=BF=3,OD=1,EH=8,DQ=4.

  在Rt△BHE,Rt△BQ0,Rt△BHC中

  有勾股定理得BE=,BD=,BC=

  ∴BD=BE

  又∵EC=5,∴BC=CE,∴CD⊥BE.

  (3)結論:存在點P,使△PBE是直角三角形.

  ①當∠BPE=90°時,點P與(2)中的點H重合,

  ∴此時點P的坐標為

  延長BH與過點A(4,0)且與軸垂直的直線交于M,

  則

  ②當∠EBP=90°時,設點P(2,),

  ∵E(2,5),H(2,),B(),

  ∴BH=4,EH=8,PH=

  在Rt△PBE中,BH⊥PE,

  可證得△BHP∽△EHB,

  ,即

  解得

  此時點P的坐標為

  過點P與軸平行的直線與FB的延長線交于點N,

  則

  綜合①,②知點P的坐標為,△PAB的面積為6;或點P的坐標為,△PAB的面積為12.


練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,已知拋物線經過原點O和x軸上另一點A,它的對稱軸x=-2與x軸交于點C,直線y=-精英家教網2x+1經過拋物線上一點B(2,m),且與y軸.直線x=-2分別交于點D、E.
(1)求m的值及該拋物線對應的函數關系式;
(2)①判斷△CBE的形狀,并說明理由;②判斷CD與BE的位置關系;
(3)若P(x,y)是該拋物線上的一個動點,是否存在這樣的點P,使得PB=PE?若存在,試求出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•衡陽)如圖,已知拋物線經過A(1,0),B(0,3)兩點,對稱軸是x=-1.
(1)求拋物線對應的函數關系式;
(2)動點Q從點O出發,以每秒1個單位長度的速度在線段OA上運動,同時動點M從O點出發以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設運動的時間為t秒.
①當t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知拋物線經過原點O和x軸上另一點A,它的對稱軸x=2與x軸交于點C,直線y=-2x-1經過拋物線上一點B(-2,m),且與y軸、直線x=2分別交于點D、E,
(1)求m的值及該拋物線對應的函數關系式;
(2)求證:①CB=CE;②D是BE的中點.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知拋物線經過坐標原點,與x軸的另一個交點為A,且頂點M坐標為(1,2),
(1)求該拋物線的解析式;
(2)現將它向右平移m(m>0)個單位,所得拋物線與x軸交于C、D兩點,與原拋物線交于點P,△CDP的面積為S,求S關于m的關系式;
(3)當m=2時,點Q為平移后的拋物線的一動點,是否存在這樣的⊙Q,使得⊙Q與兩坐標軸都相切?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知拋物線經過原點O和x軸上的另一點E,頂點為M(2,4),矩形ABCD的頂點A與O重合,AD,AB分別在x,y軸上,且AD=2,AB=3.
(1)求該拋物線對應的函數解析式;
(2)現將矩形ABCD以每秒1個單位長度的速度從左圖所示位置沿x軸的正方向勻速平行移動;同時AB上一動點P也以相同的速度從點A出發向B勻速運動,設它們的運動時間為t秒(0≤t≤3),直線AB與拋物線的交點為N,設多邊形PNCD的面積為S,試探究S是否存在最大值?若存在,求出這個最大值;若不存在,說明理由.
精英家教網

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 得得啪在线视频 | 成人在线 | 久久久av | 久久精品免费一区二区 | 国产精品99 | 国产精品欧美日韩 | 99久久久国产精品 | 国产精品1页 | 日韩中文字幕一区二区 | 久久久精品亚洲 | 一级h片 | 国产精品二区一区二区aⅴ污介绍 | 中文字幕日本在线观看 | 色爽av | 久热伊人 | 四虎最新紧急入口 | 玖玖玖视频 | 成人免费视频视频在线观看 免费 | 亚洲一级片| 欧美中文在线观看 | 亚洲电影免费 | 国产亚洲精品美女久久久久久久久久 | 一区二区三区免费网站 | 欧美日韩精品一区二区三区在线观看 | 日韩有码一区二区三区 | 亚洲婷婷一区二区三区 | 中文字幕在线观 | 黑人精品xxx一区一二区 | 日本不卡在线 | 国产成人精品久久 | 黄色手机在线观看 | 久久久久国产一区二区三区小说 | sis色中色| 亚洲情视频 | 成人午夜毛片 | 国产激情视频 | 亚州中文av | 成人午夜电影网 | 天久久 | 久久综合一区二区 | 国产小视频在线观看 |