【題目】已知:如圖,在中,
分別在邊
的中點,
是對角線,過點
作
,交
的延長線于
.
(1)求證:四邊形是平行四邊形;
(2)若四邊形是矩形,則四邊形
是什么特殊四邊形?并證明你的結論.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BC=6,E為AC邊上的點且AE=2EC,點D在BC邊上且滿足BD=DE,設BD=y,S△ABC=x,則y與x的函數關系式為( )
A.y=x2+
B.y=
x2+
C.y=x2+2D.y=
x2+2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知半圓O,點C、D在弧AB上,連接AD、BD、CD,∠BDC+2∠ABD=90°.
(1)如圖1,求證:DA=DC;
(2)如圖2,作OE⊥BD交半圓O于點E,連接AE交BD于點F,連接AC,求證:∠DFA=∠DAC+∠DAE;
(3)如圖3,在(2)的條件下,設AC交BD于點G,FG=1,AG=5,求半圓O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a≠0),經過點(1.0),對稱軸l如圖所示,若M=a+b﹣c,N=2a﹣b,P=a+c,則M,N,P中,值小于0的數有( )個.
A.2B.1C.0D.3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題提出
(1)如圖(1),已知中,
,
,
,求點
到
的最短距離.
問題探究
(2)如圖(2),已知邊長為3的正方形,點
、
分別在邊
和
上,且
,
,連接
、
,若點
、
分別為
、
上的動點,連接
,求線段
長度的最小值.
問題解決
(3)如圖(3),已知在四邊形中,
,
,
,連接
,將線段
沿方向
平移至
,點
的對應點為點
,點
為邊
上一點,且
,連接
,
的長度是否存在最小值?若存在,求出最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,拋物線y=a(x+2)(x﹣6)(a>0)與x軸交于C,D兩點(點C在點D的左邊),與y軸負半軸交于點A.
如圖1,拋物線y=a(x+2)(x﹣6)(a>0)與x軸交于C,D兩點(點C在點D的左邊),與y軸負半軸交于點A.
(1)若△ACD的面積為16.
①求拋物線解析式;
②S為線段OD上一點,過S作x軸的垂線,交拋物線于點P,將線段SC,SP繞點S順時針旋轉任意相同的角到SC1,SP1的位置,使點C,P的對應點C1,P1都在x軸上方,C1C與P1S交于點M,P1P與x軸交于點N.求的最大值;
(2)如圖2,直線y=x﹣12a與x軸交于點B,點M在拋物線上,且滿足∠MAB=75°的點M有且只有兩個,求a的取值范圍.
(1)若△ACD的面積為16.
①求拋物線解析式;
②S為線段OD上一點,過S作x軸的垂線,交拋物線于點P,將線段SC,SP繞點S順時針旋轉任意相同的角到SC1,SP1的位置,使點C,P的對應點C1,P1都在x軸上方,C1C與P1S交于點M,P1P與x軸交于點N.求的最大值;
(2)如圖2,直線y=x﹣12a與x軸交于點B,點M在拋物線上,且滿足∠MAB=75°的點M有且只有兩個,求a的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,BC=6,S△ABC=18,正方形DEFG的邊FG在BC上,頂點D,E分別在AB,AC上.
(1)如圖1,過點A作AH⊥BC于點H,交DE于點K,求正方形DEFG的邊長;
(2)如圖2,在BE上取點M,作MN⊥BC于點N,MQ∥DE交AB于點Q,QP⊥BC于點P,求證:四邊形MNPQ是正方形;
(3)如圖3,在BE上取點R,使RE=FE,連結RG,RF,若tan∠EBF=.求證:∠GRF=90°.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中(如圖),已知拋物線y=ax2+4ax+c(a≠0)經過A(0,4),B(﹣3,1),頂點為C.
(1)求該拋物線的表達方式及點C的坐標;
(2)將(1)中求得的拋物線沿y軸向上平移m(m>0)個單位,所得新拋物線與y軸的交點記為點D.當△ACD時等腰三角形時,求點D的坐標;
(3)若點P在(1)中求得的拋物線的對稱軸上,聯結PO,將線段PO繞點P逆時針轉90°得到線段PO′,若點O′恰好落在(1)中求得的拋物線上,求點P的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com