【題目】在中,
,
,
,則
________.
【答案】或
【解析】
根據(jù)三角形為銳角三角形及鈍角三角形分兩種情況考慮:分別作出AD垂直于BC,在直角三角形ABD中,利用30°所對(duì)的直角邊等于斜邊的一半求出AD的長(zhǎng),再利用勾股定理求出BD的長(zhǎng),在直角三角形ADC中,由AC及AD的長(zhǎng),利用勾股定理求出DC的長(zhǎng),由BD+DC及BD-CD即可求出BC的長(zhǎng).
分兩種情況考慮,
(i)當(dāng)△ABC為銳角三角形,過(guò)A作AD⊥BC,如圖1所示,
∵在Rt△ABD中,AB=16,∠ABC=,
∴
利用勾股定理得:
在Rt△ADC中,AD=8,AC=10,
根據(jù)勾股定理得:
則
(ii)當(dāng)△ABC為鈍角三角形,過(guò)A作AD⊥BC,如圖2所示,
∵在Rt△ABD中,AB=16,∠ABC=,
∴利用勾股定理得:
在Rt△ADC中,AD=8,AC=10,
根據(jù)勾股定理得:
則
綜上,BC的長(zhǎng)為或
故答案為:或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,AB=1,以線段BC、CD上兩點(diǎn)P、Q和方形的點(diǎn)A為頂點(diǎn)作正方形的內(nèi)接等邊△APQ,求△APQ的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,四邊形是矩形,點(diǎn)
的坐標(biāo)為
,點(diǎn)
的坐標(biāo)為
.點(diǎn)
從點(diǎn)
出發(fā),沿
以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)
運(yùn)動(dòng),同時(shí)點(diǎn)
從點(diǎn)
出發(fā),沿
以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)
運(yùn)動(dòng),當(dāng)點(diǎn)
與點(diǎn)
重合時(shí)運(yùn)動(dòng)停止.設(shè)運(yùn)動(dòng)時(shí)間為
秒.
(1)當(dāng)時(shí),線段
的中點(diǎn)坐標(biāo)為________;
(2)當(dāng)與
相似時(shí),求
的值;
(3)當(dāng)時(shí),拋物線
經(jīng)過(guò)
、
兩點(diǎn),與
軸交于點(diǎn)
,拋物線的頂點(diǎn)為
,如圖2所示.問(wèn)該拋物線上是否存在點(diǎn)
,使
,若存在,求出所有滿足條件的
點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD中,∠D=∠B=90°,AE平分∠DAB,CF平分∠DCB.試判斷∠AEF與∠CFE是否相等?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(綜合與實(shí)踐
如圖,直線的函數(shù)關(guān)系式為
,且
與
軸交于點(diǎn)A,直線
經(jīng)過(guò)點(diǎn)B(2,0),C(-1,3),直線
與
交于點(diǎn)D.
(1)求直線的函數(shù)關(guān)系式;
(2)求△ABD的面積.
(3)點(diǎn)P是軸上一動(dòng)點(diǎn),問(wèn)是否存在一點(diǎn)P,恰好使△ADP為直角三角形?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料,并完成任務(wù). 三角形的外心定義:三角形三邊的垂直平分線相交于一點(diǎn),這個(gè)點(diǎn)叫做三角形的外心,如圖1,直線分別是邊
的垂直平分線.
求證:直線相交于一點(diǎn).
證明:如圖2,設(shè)相交于點(diǎn)
,分別連接
∵是
的垂直平分線,
∴,(依據(jù)1)
∵是
的垂直平分線,
∴,
∴,(依據(jù)2)
∵是
的垂直平分線,
∴點(diǎn)在
上,(依據(jù)3)
∴直線相交于一點(diǎn).
(1)上述證明過(guò)程中的“依據(jù)1”“依據(jù)2”“依據(jù)3”分別指什么?
(2)如圖3,直線分別是
的垂直平分線,直線
相交于點(diǎn)
,點(diǎn)
是
的外心,
交
于點(diǎn)
,
交
于點(diǎn)
,分別連接
、
、
、
、
. 若
,
的周長(zhǎng)為
,求
的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知直線的同側(cè)有兩個(gè)點(diǎn)
、
,在直線
上找一點(diǎn)
,使
點(diǎn)到
、
兩點(diǎn)的距離之和最短的問(wèn)題,可以通過(guò)軸對(duì)稱來(lái)確定,即作出其中一點(diǎn)關(guān)于直線
的對(duì)稱點(diǎn),對(duì)稱點(diǎn)與另一點(diǎn)的連線與直線
的交點(diǎn)就是所要找的點(diǎn),通過(guò)這種方法可以求解很多問(wèn)題.
(1)如圖2,在平面直角坐標(biāo)系內(nèi),點(diǎn)的坐標(biāo)為
,點(diǎn)
的坐標(biāo)為
,動(dòng)點(diǎn)
在
軸上,求
的最小值;
(2)如圖3,在銳角三角形中,
,
,
的角平分線交
于點(diǎn)
,
、
分別是
和
上的動(dòng)點(diǎn),則
的最小值為______.
(3)如圖4,,
,
,點(diǎn)
,
分別是射線
,
上的動(dòng)點(diǎn),則
的最小值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】空地上有一段長(zhǎng)為a米的舊墻MN,某人利用舊墻和木欄圍成一個(gè)矩形菜園ABCD,已知木欄總長(zhǎng)為100米.
(1)已知a=20,矩形菜園的一邊靠墻,另三邊一共用了100米木欄,且圍成的矩形菜園面積為450平方米.如圖1,求所利用舊墻AD的長(zhǎng);
(2)已知0<α<50,且空地足夠大,如圖2.請(qǐng)你合理利用舊墻及所給木欄設(shè)計(jì)一個(gè)方案,使得所圍成的矩形菜園ABCD的面積最大,并求面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,轉(zhuǎn)盤被等分成六個(gè)扇形區(qū)域,并在上面依次寫上數(shù)字:、
、
、
、
、
.轉(zhuǎn)盤指針的位置固定,轉(zhuǎn)動(dòng)轉(zhuǎn)盤后任其自由停止.
當(dāng)停止轉(zhuǎn)動(dòng)時(shí),指針指向奇數(shù)區(qū)域的概率是多少?
請(qǐng)你用這個(gè)轉(zhuǎn)盤設(shè)計(jì)一個(gè)游戲(六等分扇形不變),使自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤停止時(shí),指針指向的區(qū)域的概率為
,并說(shuō)明你的設(shè)計(jì)理由.(設(shè)計(jì)方案可用圖示表示,也可以用文字表述)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com