【答案】
分析:由于C、D是弧AB的三等分點,易得∠AOC=∠DOB,又OA=OB=OC,易證得△AOC≌△OCD,可得∠ACO=∠OCD,易知∠AEC=∠OCD,因此∠ACO=∠AEC,即AC=AE=BF.
解答:
證明:∵O為

的中點,
∴OA=OB,
∴點O為

所在圓的圓心,
連接AC、BD,則有AC=CD=BD,
∵∠AOC=∠COD,OA=OC=OD,
∴△ACO≌△DCO.
∴∠ACO=∠OCD.
∵∠OEF=∠OAE+∠AOE=45°+30°=75°,∠OCD=

=75°,
∴∠OEF=∠OCD,
∴CD∥AB,
∴∠AEC=∠OCD,
∴∠ACO=∠AEC.
故AC=AE,
同理,BF=BD.
又∵AC=CD=BD
∴AE=CD=BF.
點評:本題主要考查了全等三角形的判定和性質、圓周角定理、等腰三角形的性質等知識的綜合應用能力.