【題目】看圖填空:已知如圖,AD⊥BC于D,EG⊥BC于G,∠E=∠3,求證:AD平分∠BAC. 證明:∵AD⊥BC于D,EG⊥BC于G( 已知 )
∴∠ADC=90°,∠EGC=90°
∴∠ADC=∠EGC(等量代換)
∴AD∥EG
∴∠1=∠3
∠2=∠E
又∵∠E=∠3( 已知)
∴∠1=∠2
∴AD平分∠BAC .
【答案】(垂直的定義);(同位角相等,兩直線平行);(兩直線平行,內錯角相等);(兩直線平行,同位角相等);(等量代換);(角平分線的定義)
【解析】證明:∵AD⊥BC于D,EG⊥BC于G( 已知 ), ∴∠ADC=90°,∠EGC=90° (垂直的定義),
∴∠ADC=∠EGC(等量代換),
∴AD∥EG(同位角相等,兩直線平行),
∴∠1=∠3(兩直線平行,內錯角相等),
∠2=∠E(兩直線平行,同位角相等),
又∵∠E=∠3( 已知),
∴∠1=∠2 (等量代換),
∴AD平分∠BAC,
所以答案是:(垂直的定義);(同位角相等,兩直線平行);(兩直線平行,內錯角相等);(兩直線平行,同位角相等);(等量代換);(角平分線的定義).
【考點精析】關于本題考查的平行線的判定與性質,需要了解由角的相等或互補(數量關系)的條件,得到兩條直線平行(位置關系)這是平行線的判定;由平行線(位置關系)得到有關角相等或互補(數量關系)的結論是平行線的性質才能得出正確答案.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=4cm,M是AB的中點,點P、Q分別從A、C兩點同時出發,以1cm/s的速度沿AC、CB方向均速運動,到點C、B時停止運動,設運動時間為,△PMQ的面積為S (cm2),則S (cm2)與
的函數關系可用圖象表示為( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在正方形ABCD中,點E是BC邊上一點,且BE:EC=2:1,AE與BD交于點F,則△AFD與四邊形DFEC的面積之比是________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com