如圖所示,直角梯形ABCD中,AD∥BC,∠B=90°,AD=6,BC=8,AB=3

,點M是BC的中點,點P從點M出發沿MB以每秒1個單位長的速度向點B勻速運動,到達點B后立刻以原速度沿BM返回;點Q從點M出發以每秒1個單位長的速度在射線MC上勻速運動,在點P、Q的運動過程中,以PQ為邊作等邊△EPQ,使它與梯形ABCD在射線BC的同側,點P、Q同時出發,點P返回到點M時停止運動,點Q也隨之停止,設點P、Q運動的時間是t秒(t>0)。

(1)設PQ的長為y,寫出y與t之間的函數關系式(寫出t的取值范圍)。
(2)當BP=1時,求△EPQ與梯形ABCD重疊部分的面積。
(3)隨著時間t的變化,線段AD會有一部分被△EPQ覆蓋,被覆蓋線段的長度在某個時刻會達到最大值,請回答:該最大值能否持續一個時段?若能,直接寫出t的取值范圍;若不能,請說明理由。