【題目】為培養學生數學學習興趣,某校七年級準備開設“神奇魔方”、“魅力數獨”、“數學故事”、“趣題巧解”四門選修課(每位學生必須且只選其中一門).
(1)學校對七年級部分學生進行選課調查,得到如圖所示的統計圖.根據統計圖,請估計該校七年級720名學生選“數學故事”的人數.
(2)學校將“數學故事”的學生分成人數相等的A,B,C三個班,小聰、小慧都選擇了“數學故事”.已知小聰不在A班,求他與小慧被分到同一個班的概率.(要求列表或畫樹狀圖)
科目:初中數學 來源: 題型:
【題目】某公司需要采購A、B兩種筆記本,A種筆記本的單價高出B種筆記本的單價10元,并且花費300元購買A種筆記本和花費100元購買B種筆記本的數量相等.
(1)求A種筆記本和B種筆記本的單價各是多少元;
(2)該公司準備采購A、B兩種筆記本共80本,若A種筆記本的數量不少于60本,并且采購A、B兩種筆記本的總費用不高于1100元,那么該公司有 種購買方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,圓O的半徑為3cm,B為圓O外一點,OB交圓O于A,AB=OA,動點P從點A出發,以πcm/s的速度在圓O上按逆時針方向運動一周回到點A立即停止.當點P運動的時間為( )秒時,BP與圓O相切.
A.1sB.5sC.1s或 5sD.2s或 4s
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,O為坐標原點,過二次函數y=﹣x2+4x圖象上的點A(3,3)作x軸的垂線交x軸于點B.
(1)如圖1,P為線段OA上方拋物線上的一點,在x軸上取點C(1,0),點M、N為y軸上的兩個動點,點M在點N的上方且MN=1.連接AC,當四邊形PACO的面積最大時,求PM+MNNO的最小值.
(2)如圖2,點Q(3,1)在線段AB上,作射線CQ,將△AQC沿直線AB翻折,C點的對應點為C',將△AQC'沿射線CQ平移3個單位得△A'Q'C″,在射線CQ上取一點M,使得以A'、M、C″為頂點的三角形是等腰三角形,求M點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某數學興趣小組對函數y=x+的圖象和性質進行了探究,探究過程如下,請補充完整.
x | … | ﹣3 | ﹣2 | ﹣1 | - | - | 1 | 2 | 3 | … | ||
y | … | - | m | ﹣2 | - | - | 2 |
| … |
(1)自變量x的取值范圍是 ,m= .
(2)根據(1)中表內的數據,在如圖所示的平面直角坐標系中描點,畫出函數圖象的一部分,請你畫出該函數圖象的另一部分.
(3)請你根據函數圖象,寫出兩條該函數的性質;
(4)進一步探究該函數的圖象發現:
①方程x+=3有 個實數根;
②若關于x的方程x+=t有2個實數根,則t的取值范圍是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,正方形的邊長為6,點
分別在
正半軸上,點
在第一象限.點
是
正半軸上的一動點,且
,連結
,將線段
繞點
順時針旋轉90度至
,連結
,取
中點
.
(1)當時,求
與
的坐標.
(2)如圖2,連結,以
、
為鄰邊構造平行四邊形
記平行四邊形
的面積為
.
①用含的代數式表示
②當落在
的直角邊上時,求
的度數.
(3)在(2)的條件下,連結,記
的面積為
,若
,則
(直接寫出答案)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】由于霧霾天氣頻發,市場上防護口罩出現熱銷,某醫藥公司每月固定生產甲、乙兩種型號的防霧霾口罩共20萬只,且所有產品當月全部售出,原料成本、銷售單價及工人生產提成如表:
甲 | 乙 | |
原料成本 | 12 | 8 |
銷售單價 | 18 | 12 |
生產提成 | 1 | 0.8 |
(1)若該公司五月份的銷售收入為300萬元,求甲、乙兩種型號的產品分別是多少萬只?
(2)公司實行計件工資制,即工人每生產一只口罩獲得一定金額的提成,如果公司六月份投入總成本(原料總成本+生產提成總額)不超過239萬元,應怎樣安排甲、乙兩種型號的產量,可使該月公司所獲利潤最大?并求出最大利潤(利潤=銷售收入﹣投入總成本)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c與x軸交于點A(﹣2,0),點B(4,0),與y軸交于點C(0,8),連接BC,又已知位于y軸右側且垂直于x軸的動直線l,沿x軸正方向從O運動到B(不含O點和B點),且分別交拋物線、線段BC以及x軸于點P,D,E.
(1)求拋物線的表達式;
(2)連接AC,AP,當直線l運動時,求使得△PEA和△AOC相似的點P的坐標;
(3)作PF⊥BC,垂足為F,當直線l運動時,求Rt△PFD面積的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=900,∠B=∠E=300.
(1)操作發現如圖2,固定△ABC,使△DEC繞點C旋轉。當點D恰好落在BC邊上時,填空:線段DE與AC的位置關系是 ;
② 設△BDC的面積為S1,△AEC的面積為S2。則S1與S2的數量關系是 。
(2)猜想論證
當△DEC繞點C旋轉到圖3所示的位置時,小明猜想(1)中S1與S2的數量關系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請你證明小明的猜想。
(3)拓展探究
已知∠ABC=600,點D是其角平分線上一點,BD=CD=4,OE∥AB交BC于點E(如圖4),若在射線BA上存在點F,使S△DCF =S△BDC,請直接寫出相應的BF的長
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com