【題目】如圖,在△ABC中,點O是邊AC上一個動點,過點O作直線EF∥BC分別交∠ACB、外角∠ACD的平分線于點E、F.
(1)若CE=8,CF=6,求OC的長;
(2)連接AE、AF.問:當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.
【答案】
(1)
解:∵EF交∠ACB的平分線于點E,交∠ACB的外角平分線于點F,
∴∠OCE=∠BCE,∠OCF=∠DCF,
∵MN∥BC,
∴∠OEC=∠BCE,∠OFC=∠DCF,
∴∠OEC=∠OCE,∠OFC=∠OCF,
∴OE=OC,OF=OC,
∴OE=OF;
∵∠OCE+∠BCE+∠OCF+∠DCF=180°,
∴∠ECF=90°,
在Rt△CEF中,由勾股定理得:EF= =10,
∴OC=OE= EF=5
(2)
解:當點O在邊AC上運動到AC中點時,四邊形AECF是矩形.理由如下:
當O為AC的中點時,AO=CO,
∵EO=FO,
∴四邊形AECF是平行四邊形,
∵∠ECF=90°,
∴平行四邊形AECF是矩形.
【解析】(1)根據平行線的性質以及角平分線的性質得出∠OEC=∠OCE,∠OFC=∠OCF,證出OE=OC=OF,∠ECF=90°,由勾股定理求出EF,即可得出答案;(2)根據平行四邊形的判定以及矩形的判定得出即可.
【考點精析】本題主要考查了平行線的性質和角平分線的性質定理的相關知識點,需要掌握兩直線平行,同位角相等;兩直線平行,內錯角相等;兩直線平行,同旁內角互補;定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】已知:如圖,∠1=∠2,則不一定能使△ABD≌△ACD的條件是 ( )
A. AB=AC B. BD=CD C. ∠B=∠C D. ∠BDA=∠CDA
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,且AD=12cm.點P從點A出發,以3cm/s的速度在射線AD上運動;同時,點Q從點C出發,以1cm/s的速度在射線CB上運動.運動時間為t,當t=______秒(s)時,點P、Q、C、D構成平行四邊形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解中學生獲取信息的主要渠道,設置“A:報紙,B:電視,C:網絡,D:身邊的人,E:其他”五個選項(五項中必選且只能選一項)的調查問卷,先隨機抽取50名中學生進行該問卷調查,根據調查的結果繪制條形圖如圖,該調查的方式和圖中a的值分別是( )
A. 抽樣調查,24 B. 普查,24 C. 抽樣調查,26 D. 普查,26
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了分析九年級學生藝術考試的成績,隨機抽查了兩個班級的各5名學生的成績,它們分別是:
九(1)班:96,92,94,97,96
九(2)班:90,98,97,98,92
通過數據分析,列表如下:
(1)
(2)計算兩個班級所抽取的學生藝術成績的方差,判斷哪個班學生藝術成績比較穩定.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC,BD相交于點O,點E,F在BD上,BE=DF.
(1)求證:AE=CF;
(2)若AB=6,∠COD=60°,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,AC,BD相交于點O,O是AC的中點,AD∥BC,AC=8,BD=6,.
(1)求證:四邊形ABCD是平行四邊形;
(2)若AC⊥BD,求ABCD的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com