26、如圖1,直線AC∥BD,直線AC、BD及直線AB把平面分成(1)、(2)、(3)、(4)、(5)、(6)六個部分.點P是其中的一個動點,連接PA、PB,觀察∠APB、∠PAC、∠PBD三個角.規定:直線AC、BD、AB上的各點不屬于(1)、(2)、(3)、(4)、(5)、(6)六個部分中的任何一個部分.
當動點P落在第(1)部分時,可得:∠APB=∠PAC+∠PBD,請閱讀下面的解答過程,并在相應的括號內填注理由
解:過點P作EF∥AC,如圖2
因為AC∥BD(已知),EF∥AC(所作),
所以EF∥BD
(平行線的傳遞性)
.
所以∠BPE=∠PBD
(兩直線平行,內錯角相等)
.
同理∠APE=∠PAC.
因此∠APE+∠BPE=∠PAC+∠PBD
(等量代換)
,
即∠APB=∠PAC+∠PBD.
(1)當動點P落在第(2)部分時,∠APB、∠PAC、∠PBD之間的關系是怎樣的?請直接寫出∠APB、∠PAC、∠PBD之間滿足的關系式,不必說明理由.
(2)當動點P在第(3)部分時,∠APB、∠PAC、∠PBD之間的關系是怎樣的?請直接寫出相應的結論.
(3)當動點P在第(4)部分時,∠APB、∠PAC、∠PBD之間的關系是怎樣的?請直接寫出相應的結論.
